Incentre "I" divides the angle bisector in a defined ratio of the length of sides of the triangle
"\\dfrac{AI}{IK}=\\dfrac{b+c}{a}""\\dfrac{BI}{IL}=\\dfrac{a+c}{b}"Let "\\dfrac{ANL}{ABC} =X, AN=x, BN=y, AL=p, CL=q, CK=v, BK=u."
An angle bisector of a triangle divides the opposite side into two segments that are proportional to the other two sides of the triangle.
"\\dfrac{x}{y}=\\dfrac{b}{a}, x+y=c""\\dfrac{q}{p}=\\dfrac{a}{c}, q+p=b""\\dfrac{u}{v}=\\dfrac{c}{b}, u+v=a"Then
"x=\\dfrac{bc}{a+b}, y=\\dfrac{ac}{a+b}""u=\\dfrac{ac}{b+c}, v=\\dfrac{ab}{b+c}""p=\\dfrac{bc}{a+c}, q=\\dfrac{ab}{a+c}"The ratios of areas of triangles ANL, BKN and CLK to the area of triangle ABC are equal to X , 8/35 and 1/7 respectively.
"\\dfrac{px}{bc}=X""\\dfrac{uy}{ac}=\\dfrac{8}{35}""\\dfrac{vq}{ab}=\\dfrac{1}{7}"Then
"\\dfrac{bc}{a+c}\\cdot \\dfrac{bc}{a+b}=Xbc""\\dfrac{ac}{b+c}\\cdot \\dfrac{ac}{a+b}=\\dfrac{8}{35}ac""\\dfrac{ab}{b+c}\\cdot \\dfrac{ab}{b+c}=\\dfrac{1}{7}ab"Let "\\dfrac{b}{a}=z, \\dfrac{c}{a}=w." We have
"zw=X(1+w)(1+z)""w=\\dfrac{8}{35}(z+w)(1+z)""z=\\dfrac{1}{7}(z+w)(1+w)""\\dfrac{8}{35}(z+w)(1+z)\\cdot\\dfrac{1}{7}(z+w)(1+w)=X(1+w)(1+z)""(z+w)^2=\\dfrac{245X}{8}""z=\\sqrt\\dfrac{245X}{8}-w"Substitute
"w=\\dfrac{8}{35}(\\sqrt\\dfrac{245X}{8})(1+\\sqrt\\dfrac{245X}{8}+w)""w=\\dfrac{8}{35}(\\sqrt\\dfrac{245X}{8}) +7X+ \\dfrac{8}{35}(\\sqrt\\dfrac{245X}{8})w"
"w= \\dfrac{\\dfrac{8}{35}(\\sqrt\\dfrac{245X}{8}) +7X}{1-\\dfrac{8}{35}(\\sqrt\\dfrac{245X}{8}) }"
"z=\\sqrt\\dfrac{245X}{8}-\\dfrac{\\dfrac{8}{35}(\\sqrt\\dfrac{245X}{8}) +7X}{1-\\dfrac{8}{35}(\\sqrt\\dfrac{245X}{8}) }"
"\\dfrac{AI}{IK}=\\dfrac{b+c}{a}=z+w=\\sqrt\\dfrac{245X}{8}=7\/2""\\dfrac{245X}{8}=49\/4 , X=0,4 \\ \n Answer: \\dfrac{ANL}{ABC}=0.4\/1=2\/5"
Comments
Leave a comment