Question #142441
Let AK, BL, CN be angle bisectors of triangle ABC, and they intersect at point I. It is known that the ratios of areas of triangles BKN and CLK to the area of triangle ABC are equal to 8/35 and
1/7 respectively, and ratio IK : AI is equal to 2/7. Find the ratio of the area of triangle
ANL to the area of triangle ABC.
1
Expert's answer
2020-11-15T17:56:12-0500

Incentre II divides the angle bisector in a defined ratio of the length of sides of the triangle


AIIK=b+ca\dfrac{AI}{IK}=\dfrac{b+c}{a}BIIL=a+cb\dfrac{BI}{IL}=\dfrac{a+c}{b}

Let ANLABC=X,AN=x,BN=y,AL=p,CL=q,CK=v,BK=u.\dfrac{ANL}{ABC} =X, AN=x, BN=y, AL=p, CL=q, CK=v, BK=u.

An angle bisector of a triangle divides the opposite side into two segments that are proportional to the other two sides of the triangle.



xy=ba,x+y=c\dfrac{x}{y}=\dfrac{b}{a}, x+y=cqp=ac,q+p=b\dfrac{q}{p}=\dfrac{a}{c}, q+p=buv=cb,u+v=a\dfrac{u}{v}=\dfrac{c}{b}, u+v=a

Then



x=bca+b,y=aca+bx=\dfrac{bc}{a+b}, y=\dfrac{ac}{a+b}u=acb+c,v=abb+cu=\dfrac{ac}{b+c}, v=\dfrac{ab}{b+c}p=bca+c,q=aba+cp=\dfrac{bc}{a+c}, q=\dfrac{ab}{a+c}

The ratios of areas of triangles ANL, BKN and CLK to the area of triangle ABC are equal to X , 8/35 and 1/7 respectively. 



pxbc=X\dfrac{px}{bc}=Xuyac=835\dfrac{uy}{ac}=\dfrac{8}{35}vqab=17\dfrac{vq}{ab}=\dfrac{1}{7}

Then



bca+cbca+b=Xbc\dfrac{bc}{a+c}\cdot \dfrac{bc}{a+b}=Xbcacb+caca+b=835ac\dfrac{ac}{b+c}\cdot \dfrac{ac}{a+b}=\dfrac{8}{35}acabb+cabb+c=17ab\dfrac{ab}{b+c}\cdot \dfrac{ab}{b+c}=\dfrac{1}{7}ab

Let ba=z,ca=w.\dfrac{b}{a}=z, \dfrac{c}{a}=w. We have



zw=X(1+w)(1+z)zw=X(1+w)(1+z)w=835(z+w)(1+z)w=\dfrac{8}{35}(z+w)(1+z)z=17(z+w)(1+w)z=\dfrac{1}{7}(z+w)(1+w)835(z+w)(1+z)17(z+w)(1+w)=X(1+w)(1+z)\dfrac{8}{35}(z+w)(1+z)\cdot\dfrac{1}{7}(z+w)(1+w)=X(1+w)(1+z)(z+w)2=245X8(z+w)^2=\dfrac{245X}{8}z=245X8wz=\sqrt\dfrac{245X}{8}-w

Substitute



w=835(245X8)(1+245X8+w)w=\dfrac{8}{35}(\sqrt\dfrac{245X}{8})(1+\sqrt\dfrac{245X}{8}+w)w=835(245X8)+7X+835(245X8)ww=\dfrac{8}{35}(\sqrt\dfrac{245X}{8}) +7X+ \dfrac{8}{35}(\sqrt\dfrac{245X}{8})w



w=835(245X8)+7X1835(245X8)w= \dfrac{\dfrac{8}{35}(\sqrt\dfrac{245X}{8}) +7X}{1-\dfrac{8}{35}(\sqrt\dfrac{245X}{8}) }

z=245X8835(245X8)+7X1835(245X8)z=\sqrt\dfrac{245X}{8}-\dfrac{\dfrac{8}{35}(\sqrt\dfrac{245X}{8}) +7X}{1-\dfrac{8}{35}(\sqrt\dfrac{245X}{8}) }


AIIK=b+ca=z+w=245X8=7/2\dfrac{AI}{IK}=\dfrac{b+c}{a}=z+w=\sqrt\dfrac{245X}{8}=7/2245X8=49/4,X=0,4 Answer:ANLABC=0.4/1=2/5\dfrac{245X}{8}=49/4 , X=0,4 \ Answer: \dfrac{ANL}{ABC}=0.4/1=2/5

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS