Qn 3. Consider a sequence {an}∞
n=0 of real numbers defined as follows:
a0 = 3, a1 = 2, a2 = 12, and
2an+3 − an+2 − 8an+1 + 4an = 0 for all n ≥ 0.
(i) What is a99?
(ii) Find a formula for 2a2n+1 − a2n in terms of n
The characteristic polynomial of this recurrence relation is
"(r-2)(2r^2+3r-2)=0"
"(r-2)(r+2)(2r-1)=0"
The characteristic roots are "r_1=-2, r_2=1\/2, r_3=2."
Hence, the solutions to this recurrence relation are of the form
To find the constants "\\alpha_1,\\alpha_2,\\alpha_3," use the initial conditions. This gives
"a_1=-2\\alpha_1+\\dfrac{1}{2}\\alpha_2+2\\alpha_3=2"
"a_2=4\\alpha_1+\\dfrac{1}{4}\\alpha_2+4\\alpha_3=12"
"\\alpha_1=1, \\alpha_2=0, \\alpha_3=2"
Hence, the unique solution to this recurrence relation and the given initial
conditions is the sequence {an} with
(i)
(ii)
"-((-2)^{2n}+2(2)^{2n})"
"=-4(2)^{2n}+8(2)^{2n}-(2)^{2n}-2(2)^{2n}"
"=(2)^{2n}=(4)^{n}"
Comments
Leave a comment