Answer to Question #301939 in Discrete Mathematics for Tege

Question #301939

10. Find the coefficient of x20 in A(x)=(x10+x11+.....+x25)(x1+x2+....+x15)5(x20+x21+.....+x45)


1
Expert's answer
2022-02-25T07:56:13-0500

Given, A(x)=(x10+x11++x25)(x1+x2++x15)5(x20+x21++x45)A(x)=(x^{10}+x^{11}+\cdots+x^{25})(x^1+x^2+\cdots+x^{15})^{5}(x^{20}+x^{21}+\cdots+x^{45})

Coefficient of x20 in A(x)=Coefficient of x20 in (x10+x11++x25)(x1+x2++x15)5(x20+x21++x45)=Coefficient of x20 in [x10(1+x++x15)x5(1+x++x14)5x20(1+x++x25)]=Coefficient of x20 in x35[(1+x++x15)(1+x++x14)5(1+x++x25)]\begin{aligned} \text{Coefficient of $x^{20}$~in}~A(x) &= \text{Coefficient of $x^{20}$~in~} (x^{10}+x^{11}+\cdots+x^{25})\\ &\qquad(x^1+x^2+\cdots+x^{15})^{5}(x^{20}+x^{21}+\cdots+x^{45})\\ &= \text{Coefficient of $x^{20}$~in~} [x^{10} (1+x+\cdots+x^{15})\cdot \\&\qquad x^{5}(1+x+\cdots+x^{14})^{5}\cdot x^{20}(1+x+\cdots+x^{25})]\\ &=\text{Coefficient of $x^{20}$~in~} x^{35} [(1+x+\cdots+x^{15})\cdot \\&\qquad (1+x+\cdots+x^{14})^{5}\cdot(1+x+\cdots+x^{25})]\\ \end{aligned}

The first term in the expansion ofx35[(1+x++x15)(1+x++x14)5(1+x++x25)]x^{35} [(1+x+\cdots+x^{15})\cdot (1+x+\cdots+x^{14})^{5}\cdot(1+x+\cdots+x^{25})] will be x35x^{35} and hence coefficient of x20x^{20} in A(x) = 0, since negative powers cannot exist in the expansion of (1+x++x15)(1+x++x14)5(1+x++x25).(1+x+\cdots+x^{15})\cdot (1+x+\cdots+x^{14})^{5}\cdot(1+x+\cdots+x^{25}).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment