10. Find the coefficient of x20 in A(x)=(x10+x11+.....+x25)(x1+x2+....+x15)5(x20+x21+.....+x45)
Given, "A(x)=(x^{10}+x^{11}+\\cdots+x^{25})(x^1+x^2+\\cdots+x^{15})^{5}(x^{20}+x^{21}+\\cdots+x^{45})"
"\\begin{aligned}\n\\text{Coefficient of $x^{20}$~in}~A(x) &= \\text{Coefficient of $x^{20}$~in~} (x^{10}+x^{11}+\\cdots+x^{25})\\\\ &\\qquad(x^1+x^2+\\cdots+x^{15})^{5}(x^{20}+x^{21}+\\cdots+x^{45})\\\\\n&= \\text{Coefficient of $x^{20}$~in~} [x^{10} (1+x+\\cdots+x^{15})\\cdot \\\\&\\qquad x^{5}(1+x+\\cdots+x^{14})^{5}\\cdot x^{20}(1+x+\\cdots+x^{25})]\\\\\n&=\\text{Coefficient of $x^{20}$~in~} x^{35} [(1+x+\\cdots+x^{15})\\cdot \\\\&\\qquad (1+x+\\cdots+x^{14})^{5}\\cdot(1+x+\\cdots+x^{25})]\\\\\n\\end{aligned}"
The first term in the expansion of"x^{35} [(1+x+\\cdots+x^{15})\\cdot (1+x+\\cdots+x^{14})^{5}\\cdot(1+x+\\cdots+x^{25})]" will be "x^{35}" and hence coefficient of "x^{20}" in A(x) = 0, since negative powers cannot exist in the expansion of "(1+x+\\cdots+x^{15})\\cdot (1+x+\\cdots+x^{14})^{5}\\cdot(1+x+\\cdots+x^{25})."
Comments
Leave a comment