Question #301649

1. List all elements in A. A={xϵN:(3x2-x)<55}


1
Expert's answer
2022-02-24T06:23:01-0500

Let us list all elements in A={xN:(3x2x)<55}.A=\{x\in\N:(3x^2-x)<55\}.

For this let us solve the inequality 3x2x<55.3x^2-x<55.

The discriminant of the equation 3x2x55=03x^2-x-55=0 is equal to D=1+3455=661,D=1+3\cdot4\cdot 55=661, and hence the equation has the solutions x1=166164.11x_1=\frac{1-\sqrt{661}}{6}\approx -4.11 and x2=1+66164.45x_2=\frac{1+\sqrt{661}}{6}\approx 4.45

It follows that the real solutions of the inequlity 3x2x<553x^2-x<55 belong to the set (16616,1+6616).(\frac{1-\sqrt{661}}{6},\frac{1+\sqrt{661}}{6}).

This set contains the following natural numbers: 1,2,3,4.1,2,3,4.

Consequently, A={1,2,3,4}.A=\{1,2,3,4\}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS