((π β π) β§ (π β π)) β (π β π)
Let us construct the truth table of the following proposition.
"f=((\ud835\udc5d \u2192 \ud835\udc5e) \u2227 (\ud835\udc5e \u2192 \ud835\udc5f)) \u2192 (\ud835\udc5d \u2192 \ud835\udc5f)"
"\\ \\begin{array}{||c|c|c||c|c|c|c|c||}\n\\hline\\hline\np & q & r &\ud835\udc5d \u2192 \ud835\udc5e & \ud835\udc5e \u2192 \ud835\udc5f & (\ud835\udc5d \u2192 \ud835\udc5e) \u2227 (\ud835\udc5e \u2192 \ud835\udc5f) & \ud835\udc5d \u2192 \ud835\udc5f & f\\\\\n\\hline\\hline\n0 & 0 & 0 & 1 & 1 & 1 & 1 & 1\\\\\n\\hline\n0 & 0 & 1 & 1 & 1 & 1 & 1 & 1\\\\\n\\hline\n0 & 1 & 0 & 1 & 0 & 0 & 1 & 1\\\\\n\\hline \n0 & 1 & 1 & 1 & 1 & 1 & 1 & 1\\\\\n\\hline \n1 & 0 & 0 & 0 & 1 & 0 & 0 & 1\\\\\n\\hline \n1 & 0 & 1 & 0 & 1 & 0 & 1 & 1\\\\\n\\hline \n1 & 1 & 0 & 1 & 0 & 0 & 0 & 1\\\\\n\\hline \n1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\\\\\n\\hline\\hline\n\\end{array}"
It follows that the formula "((\ud835\udc5d \u2192 \ud835\udc5e) \u2227 (\ud835\udc5e \u2192 \ud835\udc5f)) \u2192 (\ud835\udc5d \u2192 \ud835\udc5f)" is a tautology.
Comments
Leave a comment