Question #301228

((𝑝 → 𝑞) ∧ (𝑞 → 𝑟)) → (𝑝 → 𝑟)


1
Expert's answer
2022-02-23T09:16:53-0500

Let us construct the truth table of the following proposition.


f=((𝑝𝑞)(𝑞𝑟))(𝑝𝑟)f=((𝑝 → 𝑞) ∧ (𝑞 → 𝑟)) → (𝑝 → 𝑟)


 pqr𝑝𝑞𝑞𝑟(𝑝𝑞)(𝑞𝑟)𝑝𝑟f0001111100111111010100110111111110001001101010111101000111111111\ \begin{array}{||c|c|c||c|c|c|c|c||} \hline\hline p & q & r &𝑝 → 𝑞 & 𝑞 → 𝑟 & (𝑝 → 𝑞) ∧ (𝑞 → 𝑟) & 𝑝 → 𝑟 & f\\ \hline\hline 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1\\ \hline 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1\\ \hline 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1\\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1\\ \hline 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1\\ \hline 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1\\ \hline 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1\\ \hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\\ \hline\hline \end{array}


It follows that the formula ((𝑝𝑞)(𝑞𝑟))(𝑝𝑟)((𝑝 → 𝑞) ∧ (𝑞 → 𝑟)) → (𝑝 → 𝑟) is a tautology.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS