((𝑝 → 𝑞) ∧ (𝑞 → 𝑟)) → (𝑝 → 𝑟)
Let us construct the truth table of the following proposition.
f=((𝑝→𝑞)∧(𝑞→𝑟))→(𝑝→𝑟)f=((𝑝 → 𝑞) ∧ (𝑞 → 𝑟)) → (𝑝 → 𝑟)f=((p→q)∧(q→r))→(p→r)
pqr𝑝→𝑞𝑞→𝑟(𝑝→𝑞)∧(𝑞→𝑟)𝑝→𝑟f0001111100111111010100110111111110001001101010111101000111111111\ \begin{array}{||c|c|c||c|c|c|c|c||} \hline\hline p & q & r &𝑝 → 𝑞 & 𝑞 → 𝑟 & (𝑝 → 𝑞) ∧ (𝑞 → 𝑟) & 𝑝 → 𝑟 & f\\ \hline\hline 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1\\ \hline 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1\\ \hline 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1\\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1\\ \hline 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1\\ \hline 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1\\ \hline 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1\\ \hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\\ \hline\hline \end{array} p00001111q00110011r01010101p→q11110011q→r11011101(p→q)∧(q→r)11010001p→r11110101f11111111
It follows that the formula ((𝑝→𝑞)∧(𝑞→𝑟))→(𝑝→𝑟)((𝑝 → 𝑞) ∧ (𝑞 → 𝑟)) → (𝑝 → 𝑟)((p→q)∧(q→r))→(p→r) is a tautology.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments