For each of these relations on the set {1, 2, 3, 4}, decide
whether it is reflexive, whether it is symmetric, whether
it is antisymmetric, and whether it is transitive.
{(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}
We have given the set A= {"1,2,3,4" }
The relation R is not reflexive, because R does not contain (1,1) and (4,4).
The relation R is not symmetric , because "(2,4) \\in R" and "(4,2) \\notin R" .
The relation R is not antisymmetric, because "(2,3) \\in R" and "(3,2) \\in R" , while "2 \\ne 3" .
The relation R is transitive, because if "(a,b) \\in R" and "(b,c) \\in R" then we also note that "(a,c) \\in R"
"(2,2) \\in R \\hspace{2mm}and\\hspace{2mm} (2,3) \\in R \\implies (2,3) \\in R\\\\\n\n(2,2) \\in R \\hspace{2mm}and\\hspace{2mm} (2,4) \\in R \\implies (2,4) \\in R\\\\\n\n(2,3) \\in R \\hspace{2mm}and\\hspace{2mm} (3,2) \\in R \\implies (2,2) \\in R\\\\\n\n(2,3) \\in R\\hspace{2mm} and \\hspace{2mm}(3,3) \\in R \\implies (2,3) \\in R\\\\\n\n(2,3) \\in R \\hspace{2mm}and\\hspace{2mm} (3,4) \\in R \\implies (2,4) \\in R\\\\\n\n(3,2) \\in R \\hspace{2mm}and \\hspace{2mm}(2,3) \\in R \\implies (3,3) \\in R\\\\\n\n(3,2) \\in R\\hspace{2mm} and\\hspace{2mm} (2,4) \\in R \\implies (3,4) \\in R\\\\\n\n(3,3) \\in R \\hspace{2mm}and\\hspace{2mm} (3,2) \\in R \\implies (3,2) \\in R\\\\\n\n(3,3) \\in R\\hspace{2mm} and\\hspace{2mm} (3,3) \\in R \\implies (3,3) \\in R\\\\\n\n(3,3) \\in R\\hspace{2mm} and\\hspace{2mm} (3,4) \\in R \\implies (3,4) \\in R\\\\"
Comments
Leave a comment