Using Boolean algebra simplify the statement ¬(𝑟 → 𝑠) → (¬𝑟)
Using Boolean algebra let us simplify the statement:
"\u00ac(\ud835\udc5f \u2192 \ud835\udc60) \u2192 (\u00ac\ud835\udc5f) =\u00ac(\u00ac(\ud835\udc5f \u2192 \ud835\udc60))\\lor (\u00ac\ud835\udc5f) =(\ud835\udc5f \u2192 \ud835\udc60)\\lor (\u00ac\ud835\udc5f) =(\u00ac\ud835\udc5f\\lor \ud835\udc60)\\lor (\u00ac\ud835\udc5f) =\n(s\\lor \u00ac\ud835\udc5f)\\lor (\u00ac\ud835\udc5f) =s\\lor( \u00ac\ud835\udc5f\\lor \u00ac\ud835\udc5f) =s\\lor \u00ac\ud835\udc5f=\u00ac\ud835\udc5f\\lor s=\ud835\udc5f \u2192 \ud835\udc60."
Comments
Leave a comment