i : ( 1 − x 2 ) y ′ − x y = 1 y ′ − x 1 − x 2 y = 1 1 − x 2 − l i n e a r e q u a t i o n P ( x ) = − x 1 − x 2 , Q ( x ) = 1 1 − x 2 y = 1 exp ( ∫ P d x ) ( ∫ Q e ∫ P d x d x + C ) = = 1 exp ( ∫ x x 2 − 1 d x ) ( ∫ 1 1 − x 2 e ∫ x x 2 − 1 d x d x + C ) = = 1 exp ( 1 2 ln ( 1 − x 2 ) ) ( ∫ 1 1 − x 2 e 1 2 ln ( 1 − x 2 ) d x + C ) = = 1 1 − x 2 ( ∫ 1 1 − x 2 d x + C ) = 1 1 − x 2 ( a sin x + C ) i i : y ′ + x y = x y 2 − B e r n o u l l i e q u a t i o n y = 0 − t r i v i a l P ( x ) = x , Q ( x ) = x , n = 2 u = y − 1 y = 1 u y ′ = − 1 u 2 u ′ − 1 u 2 u ′ + x u = x u 2 u ′ − x u = − x u ′ = x ( u − 1 ) d ( u − 1 ) u − 1 = x d x ln ∣ u − 1 ∣ = x 2 2 u = C e x 2 2 + 1 y = 1 C e x 2 2 + 1 i:\\\left( 1-x^2 \right) y'-xy=1\\y'-\frac{x}{1-x^2}y=\frac{1}{1-x^2}-linear\,\,equation\\P\left( x \right) =-\frac{x}{1-x^2},Q\left( x \right) =\frac{1}{1-x^2}\\y=\frac{1}{\exp \left( \int{Pdx} \right)}\left( \int{Qe^{\int{Pdx}}dx}+C \right) =\\=\frac{1}{\exp \left( \int{\frac{x}{x^2-1}dx} \right)}\left( \int{\frac{1}{1-x^2}e^{\int{\frac{x}{x^2-1}dx}}dx}+C \right) =\\=\frac{1}{\exp \left( \frac{1}{2}\ln \left( 1-x^2 \right) \right)}\left( \int{\frac{1}{1-x^2}e^{\frac{1}{2}\ln \left( 1-x^2 \right)}dx}+C \right) =\\=\frac{1}{\sqrt{1-x^2}}\left( \int{\frac{1}{\sqrt{1-x^2}}dx}+C \right) =\frac{1}{\sqrt{1-x^2}}\left( \mathrm{a}\sin x+C \right) \\ii:\\y'+xy=xy^2-Bernoulli\,\,equation\\y=0 -\,\,trivial\\P\left( x \right) =x,Q\left( x \right) =x,n=2\\u=y^{-1}\\y=\frac{1}{u}\\y'=-\frac{1}{u^2}u'\\-\frac{1}{u^2}u'+\frac{x}{u}=\frac{x}{u^2}\\u'-xu=-x\\u'=x\left( u-1 \right) \\\frac{d\left( u-1 \right)}{u-1}=xdx\\\ln \left| u-1 \right|=\frac{x^2}{2}\\u=Ce^{\frac{x^2}{2}}+1\\y=\frac{1}{Ce^{\frac{x^2}{2}}+1}\\ i : ( 1 − x 2 ) y ′ − x y = 1 y ′ − 1 − x 2 x y = 1 − x 2 1 − l in e a r e q u a t i o n P ( x ) = − 1 − x 2 x , Q ( x ) = 1 − x 2 1 y = e x p ( ∫ P d x ) 1 ( ∫ Q e ∫ P d x d x + C ) = = e x p ( ∫ x 2 − 1 x d x ) 1 ( ∫ 1 − x 2 1 e ∫ x 2 − 1 x d x d x + C ) = = e x p ( 2 1 l n ( 1 − x 2 ) ) 1 ( ∫ 1 − x 2 1 e 2 1 l n ( 1 − x 2 ) d x + C ) = = 1 − x 2 1 ( ∫ 1 − x 2 1 d x + C ) = 1 − x 2 1 ( a sin x + C ) ii : y ′ + x y = x y 2 − B er n o u ll i e q u a t i o n y = 0 − t r i v ia l P ( x ) = x , Q ( x ) = x , n = 2 u = y − 1 y = u 1 y ′ = − u 2 1 u ′ − u 2 1 u ′ + u x = u 2 x u ′ − xu = − x u ′ = x ( u − 1 ) u − 1 d ( u − 1 ) = x d x ln ∣ u − 1 ∣ = 2 x 2 u = C e 2 x 2 + 1 y = C e 2 x 2 + 1 1
Comments