Answer to Question #320276 in Differential Equations for ire

Question #320276

find the general solutions of (x+y+2z) dz/dx+(x+y+2z)dz/dy=3z


1
Expert's answer
2022-03-30T11:35:02-0400

(x+y+2z)zdx+(x+y+2z)zdy=3z(x+y+2z)\frac{\partial z}{dx}+(x+y+2z)\frac{\partial z}{dy}=3z

The auxiliary equations is:

dxx+y+2z=dyx+y+2z=dz3z\frac{dx}{x+y+2z}=\frac{dy}{x+y+2z}=\frac{dz}{3z}

A first characteristic equation comes from

dxx+y+2z=dyx+y+2z\frac{dx}{x+y+2z}=\frac{dy}{x+y+2z}

x=y+C1x=y+C_1

A second characteristic equation comes from

dx+dy43dz2x+2y+4z4z=dz3z\frac{dx+dy-\frac43dz}{2x+2y+4z-4z}=\frac{dz}{3z}

d(x+y)43dz2(x+y)=dz3z\frac{d(x+y)-\frac43dz}{2(x+y)}=\frac{dz}{3z}

Set x+y=tx+y=t

dt43dz2t=dz3z\frac{dt-\frac43dz}{2t}=\frac{dz}{3z}

3zdt4zdz=2tdz3zdt-4zdz=2tdz

3zdtdz2t=4z3z\frac{dt}{dz}-2t=4z

3dtdz2zt=43\frac{dt}{dz}-\frac{2}{z}t=4 (1)

Let’s solve the following equation

3dtdz2zt=03\frac{dt}{dz}-\frac{2}{z}t=0

3dtt=2dzz3\frac{dt}{t}=2\frac{dz}{z}

3lnt=2lnz+3lnC(z)3\ln t=2\ln z+3\ln{C(z)}

t=C(z)z23t=C(z)z^{\frac23}

To find solution of the equation (1) we should think C is a function of z

t=Cz23+23Cz13t'=C'z^{\frac23}+\frac23Cz^{-\frac13}

3(Cz23+23Cz13)2Cz13=43(C'z^{\frac23}+\frac23Cz^{-\frac13})-2Cz^{-\frac13}=4

3Cz=43C'z=4

C=431zC'=\frac43\frac1z

C=43lnz+C2C=\frac43\ln |z|+C_2

t=(43lnz+C2)z23t=(\frac43\ln |z|+C_2)z^{\frac23}

x+y=(43lnz+C2)z23x+y=(\frac43\ln |z|+C_2)z^{\frac23}

C2=(x+y)z2343lnzC_2=(x+y)z^{-\frac23}-\frac43\ln |z|

General solution of the PDE on the form of implicit equation:

Φ(C1,C2)=0\Phi(C_1,C_2)=0.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment