(x+y+2z)dx∂z+(x+y+2z)dy∂z=3z
The auxiliary equations is:
x+y+2zdx=x+y+2zdy=3zdz
A first characteristic equation comes from
x+y+2zdx=x+y+2zdy
x=y+C1
A second characteristic equation comes from
2x+2y+4z−4zdx+dy−34dz=3zdz
2(x+y)d(x+y)−34dz=3zdz
Set x+y=t
2tdt−34dz=3zdz
3zdt−4zdz=2tdz
3zdzdt−2t=4z
3dzdt−z2t=4 (1)
Let’s solve the following equation
3dzdt−z2t=0
3tdt=2zdz
3lnt=2lnz+3lnC(z)
t=C(z)z32
To find solution of the equation (1) we should think C is a function of z
t′=C′z32+32Cz−31
3(C′z32+32Cz−31)−2Cz−31=4
3C′z=4
C′=34z1
C=34ln∣z∣+C2
t=(34ln∣z∣+C2)z32
x+y=(34ln∣z∣+C2)z32
C2=(x+y)z−32−34ln∣z∣
General solution of the PDE on the form of implicit equation:
Φ(C1,C2)=0.
Comments
Leave a comment