find the general solutions of (x+y+2z) dz/dx+(x+y+2z)dz/dy=3z
"(x+y+2z)\\frac{\\partial z}{dx}+(x+y+2z)\\frac{\\partial z}{dy}=3z"
The auxiliary equations is:
"\\frac{dx}{x+y+2z}=\\frac{dy}{x+y+2z}=\\frac{dz}{3z}"
A first characteristic equation comes from
"\\frac{dx}{x+y+2z}=\\frac{dy}{x+y+2z}"
"x=y+C_1"
A second characteristic equation comes from
"\\frac{dx+dy-\\frac43dz}{2x+2y+4z-4z}=\\frac{dz}{3z}"
"\\frac{d(x+y)-\\frac43dz}{2(x+y)}=\\frac{dz}{3z}"
Set "x+y=t"
"\\frac{dt-\\frac43dz}{2t}=\\frac{dz}{3z}"
"3zdt-4zdz=2tdz"
"3z\\frac{dt}{dz}-2t=4z"
"3\\frac{dt}{dz}-\\frac{2}{z}t=4" (1)
Let’s solve the following equation
"3\\frac{dt}{dz}-\\frac{2}{z}t=0"
"3\\frac{dt}{t}=2\\frac{dz}{z}"
"3\\ln t=2\\ln z+3\\ln{C(z)}"
"t=C(z)z^{\\frac23}"
To find solution of the equation (1) we should think C is a function of z
"t'=C'z^{\\frac23}+\\frac23Cz^{-\\frac13}"
"3(C'z^{\\frac23}+\\frac23Cz^{-\\frac13})-2Cz^{-\\frac13}=4"
"3C'z=4"
"C'=\\frac43\\frac1z"
"C=\\frac43\\ln |z|+C_2"
"t=(\\frac43\\ln |z|+C_2)z^{\\frac23}"
"x+y=(\\frac43\\ln |z|+C_2)z^{\\frac23}"
"C_2=(x+y)z^{-\\frac23}-\\frac43\\ln |z|"
General solution of the PDE on the form of implicit equation:
"\\Phi(C_1,C_2)=0".
Comments
Leave a comment