Question #320249

(d2y/dx2) - y = 4/(1+e^​x)


1
Expert's answer
2022-03-31T13:52:09-0400

At first, we solve the equation: yy=0y''-y=0. To solve the equation, we substitute solution of the form:g=eλxg=e^{\lambda x} and receive the equation for λ:\lambda: λ21=0\lambda^2-1=0. Solutions are: λ=±1\lambda=\pm1. Thus, the solution of the homogenous equation yy=0y''-y=0 is: g=c1ex+c2exg=c_1e^{x}+c_2e^{-x}. The solution of the initial equation can be presented as: y=g+fy=g+f, where ff is a solution of the initial equation. Substitute f=cexf=ce^{x} with function c(x)c(x) into the initial equation:

1). cex+2cex+cexcex=41+exc''e^{x}+2c'e^x+ce^x-ce^x=\frac{4}{1+e^x}. Do the change of variables: f1=cf_1=c' in the equation: f1ex+2f1ex=41+exf_1'e^{x}+2f_1e^x=\frac{4}{1+e^x} .Solve another homogeneous equation: f1=2f1f_1'=-2f_1. The solution is: f1=b1e2xf_1=b_1e^{-2x}. Suppose that b1b_1 is a function. Substitute the latter expression into equation f1ex+2f1ex=41+exf_1'e^{x}+2f_1e^x=\frac{4}{1+e^x} and receive: b1=4ex1+exb_1'=\frac{4e^{x}}{1+e^x} Compute the integral to find f1f_1: b1=4d(ex)1+ex=4(ln(1+ex)+C1)b_1=4\int\frac{d(e^x)}{1+e^x}=4(ln(1+e^x)+C_1). f1=4e2xln(1+ex)+e2xC1f_1=4e^{-2x}ln(1+e^x)+e^{-2x}C_1. c=fdx=(4e2xln(1+ex)+4e2xC1)dx=I1+I2c=\int fdx=\int(4e^{-2x}ln(1+e^x)+4e^{-2x}C_1)dx=I_1+I_2, where I1=4e2xln(1+ex)dxI_1=4\int e^{-2x}ln(1+e^x)dx, I2=4e2xC1dxI_2=4\int e^{-2x}C_1dx. Compute the integral I1I_1 :

I1=4e2xln(1+ex)dxI_1=4\int e^{-2x}ln(1+e^x)dx. Make the change of variables: z=exz=e^{x}. The integral becomes: I1=4z3ln(1+z)dz=2z2ln(1+z)+2z21+zdz=2e2xln(1+ex)+2(ex+ln(1+ex)x)+a1I_1=4\int z^{-3}ln(1+z)dz=-2{z^{-2}}ln(1+z)+2\int \frac{z^{-2}}{1+z}dz=-2{e^{-2x}}ln(1+e^x)+2(-e^{-x}+ln(1+e^x)-x)+a_1

I2=2C1e2x+a2I_2=-2C_1e^{-2x}+a_2

Thus, c=2e2xln(1+ex)+2(ex+ln(1+ex)x)+a12C1e2x+a2c=-2{e^{-2x}}ln(1+e^x)+2(-e^{-x}+ln(1+e^x)-x)+a_1-2C_1e^{-2x}+a_2 and, respectively:

f=2+2(exex)ln(1+ex)2xex2C1ex+Kexf=-2+2(e^{x}-e^{-x})ln(1+e^{x})-2xe^x-2C_1e^{-x}+Ke^x. Last two terms can be absorbed by gg and y=c1ex+c2ex2+2(exex)ln(1+ex)2xexy=c_1e^{x}+c_2e^{-x}-2+2(e^{x}-e^{-x})ln(1+e^{x})-2xe^x This is the solution of the problem.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS