Consider the autonomous DE xʹ = x(x − 1)(x+ 2). Determine the
critical points of the equation. Discuss a way of obtaining a phase portrait
of the equation.
"x'=x(x-1)(x+2)\\\\Critical\\,\\,points:\\\\x'=0\\Rightarrow x\\left( x-1 \\right) \\left( x+2 \\right) =0\\Rightarrow \\\\\\Rightarrow x\\in \\left\\{ -2,0,1 \\right\\} \\\\Linearization\\,\\,around\\,\\,the\\,\\,critical\\,\\,points:\\\\x=-2:\\\\x'=6\\left( x+2 \\right) \\Rightarrow x+2=Ce^{6t}-the\\,\\,trajectory\\,\\,runs\\,\\,away\\,\\,from\\,\\,-2\\\\x=0:\\\\x'=-2x\\Rightarrow x=Ce^{-2t}-the\\,\\,trajectory\\,\\,runs\\,\\,into\\,\\,0\\\\x=1:\\\\x'=2\\left( x-1 \\right) \\Rightarrow x-1=Ce^{2t}-the\\,\\,trajectory\\,\\,runs\\,\\,away\\,\\,from\\,\\,1"
Comments
Leave a comment