d P d t = 0.2 P ( t ) ( 1 − P ( t ) 200 ) , P ( 0 ) = 150 a : A u t o n o m o u s sin c e t h e R H S d o e s n o t d e p e n d o n t b : 1000 d P P ( P − 200 ) = d t 5 ∫ ( 1 P − 200 − 1 P ) d P = d t 5 ln ∣ P − 200 P ∣ = t + C ′ P − 200 P = C e t / 5 P ( t ) = 200 1 − C e t / 5 P ( 0 ) = 150 ⇒ 200 1 − C = 150 ⇒ C = − 1 3 P ( t ) = 200 1 + 1 3 e t / 5 \frac{dP}{dt}=0.2P\left( t \right) \left( 1-\frac{P\left( t \right)}{200} \right) ,P\left( 0 \right) =150\\a: Autonomous\,\,\sin ce\,\,the\,\,RHS\,\,does\,\,not\,\,depend\,\,on\,\,t\\b: \frac{1000dP}{P\left( P-200 \right)}=dt\\5\int{\left( \frac{1}{P-200}-\frac{1}{P} \right) dP}=dt\\5\ln \left| \frac{P-200}{P} \right|=t+C'\\\frac{P-200}{P}=Ce^{t/5}\\P\left( t \right) =\frac{200}{1-Ce^{t/5}}\\P\left( 0 \right) =150\Rightarrow \frac{200}{1-C}=150\Rightarrow C=-\frac{1}{3}\\P\left( t \right) =\frac{200}{1+\frac{1}{3}e^{t/5}} d t d P = 0.2 P ( t ) ( 1 − 200 P ( t ) ) , P ( 0 ) = 150 a : A u t o n o m o u s sin ce t h e R H S d oes n o t d e p e n d o n t b : P ( P − 200 ) 1000 d P = d t 5 ∫ ( P − 200 1 − P 1 ) d P = d t 5 ln ∣ ∣ P P − 200 ∣ ∣ = t + C ′ P P − 200 = C e t /5 P ( t ) = 1 − C e t /5 200 P ( 0 ) = 150 ⇒ 1 − C 200 = 150 ⇒ C = − 3 1 P ( t ) = 1 + 3 1 e t /5 200
Comments