Let P(t) be the population of a certain animal species. Assume the
P(t) satisfies the logistic growth equation,
dP
dt = 0.2P(t) (1 −
P(t)
200) , y(0) = 150
a) Is the above equation autonomous? if yes (explain your answer with
proper reasons), if no (justify you answer).
b) Solve the above initial value problem, and find the value of solution at
time t = 0.5 using separation of variables
"\\frac{dP}{dt}=0.2P\\left( t \\right) \\left( 1-\\frac{P\\left( t \\right)}{200} \\right) ,P\\left( 0 \\right) =150\\\\a: Autonomous\\,\\,\\sin ce\\,\\,the\\,\\,RHS\\,\\,does\\,\\,not\\,\\,depend\\,\\,on\\,\\,t\\\\b: \\frac{1000dP}{P\\left( P-200 \\right)}=dt\\\\5\\int{\\left( \\frac{1}{P-200}-\\frac{1}{P} \\right) dP}=dt\\\\5\\ln \\left| \\frac{P-200}{P} \\right|=t+C'\\\\\\frac{P-200}{P}=Ce^{t\/5}\\\\P\\left( t \\right) =\\frac{200}{1-Ce^{t\/5}}\\\\P\\left( 0 \\right) =150\\Rightarrow \\frac{200}{1-C}=150\\Rightarrow C=-\\frac{1}{3}\\\\P\\left( t \\right) =\\frac{200}{1+\\frac{1}{3}e^{t\/5}}"
Comments
Leave a comment