(d^3-5d^2+7d-3)y=0
The characteristic equation is
D3−5D2+7D−3=0⟹D3−D2−4D2+4D+3D−3=0⟹D2(D−1)−4D(D−1)+3(D−1)=0D^3−5D^2+7D−3=0 ⟹D^3−D^2−4D^2+4D+3D−3=0 ⟹D^2(D−1)−4D(D−1)+3(D−1)=0D3−5D2+7D−3=0⟹D3−D2−4D2+4D+3D−3=0⟹D2(D−1)−4D(D−1)+3(D−1)=0
(D−1)(D2−4D+3)=0⟹(D−1)(D−1)(D−3)=0⟹D=1∨D=1∨D=3(D−1)(D^2−4D+3)=0 ⟹(D−1)(D−1)(D−3)=0 ⟹D=1∨D=1∨D=3(D−1)(D2−4D+3)=0⟹(D−1)(D−1)(D−3)=0⟹D=1∨D=1∨D=3
Therefore the general solution is
y=c1ex+c2xex+c3e3x=(c1+xc2)ex+c3e3xy=c_1e^x+c_2xe^x+c_3e^{3x}=(c_1+xc_2)e^x+c_3e^{3x }y=c1ex+c2xex+c3e3x=(c1+xc2)ex+c3e3x
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment