The general solution takes the form
y=yc+yp
To solve for yc;
An auxiliary equation can be given as:
m2+4m+3=0
D=16-12=4
m1=2−4+2=−1
m2=2−4−2=−3
yc=C1e−x+C2e−3x
2cos2x=cos(2x)+1
yp=xseax(Rm(x)cos(bx)+Tm(x)sin(bx)(
s=0 if a+bi is not a root or s=k if it is.
Sollutiong for 1:
a+bi=0, then s=0
y0=A
y'0=0
y''0=0
3A=1
A=1/3
y0=1/3
Sollution fot cos(2x)
a+bi=2i, then s=0
y1=Bsin(2x)+Acos(2x)
y'1=2Bcos(2x)-2Asin(2x)
y''1=-4Bsin(2x)-4Acos(2x)
(-B-8A)sin(2x)+(8B-A)cos(2x)=cos(2x)
A=-1/65
B=8/65
y1=658sin(2x)−65cos(2x)
y=C1e−x+C2e−3x+658sin(2x)−65cos(2x)+1/3
Comments
Leave a comment