Solve for x in the following set of simultaneous differential equations by using D-operator methods:
(D + 2) x - 3y = 1
-3x + (D + ) y = e-t
Given the simultaneous differential equations,
"\\begin{aligned}\n(D + 2) x - 3y &= 1\\qquad(1)\\\\\n-3x + (D + 2) y &= e^{-t} ~\\quad(2)\n\\end{aligned}"
Applying "(D + 2)" operator for (1), Multiplying (2) by 3 and adding we get,
"\\begin{aligned}\n(D + 2)^2 x - 3(D+2)y &= 2\\qquad(1)\\\\\n-9x + 3(D + 2) y &= 3e^{-t} ~~~(2)\\\\\n\\hline\n(D + 2)^2 x -9x &= 2+3e^{-t}\\\\\n(D^2 + 4D + 4 - 9)x & = 2+3e^{-t}\\\\\n(D^2 + 4D -5)x & = 2+3e^{-t}\\\\\n\\end{aligned}"
The auxiliary equation is, "m^{2} + 4m - 5 = 0." Solving we get "m = -5,1".
The complementary function for x(t) is, "\\text{C.F} = c_1e^{-5t} + c_2 e^{t}"
"\\begin{aligned}\n\\text{Particular Integral for }x(t) &= \\frac{1}{D^{2}+4D-5} (2+3e^{-t})\\\\\n&=-\\frac{2}{5} -\\frac{3e^{-t}}{8}\\quad(\\text{Replacing D by 0 and -1 for first} \\\\ &\\qquad \\qquad \\qquad \\qquad\\text{ and second term respectively})\\\\\n\\end{aligned}"
"\\therefore x(t) = c_{1}e^{-5t}+c_2e^t-\\Big(\\dfrac{2}{5}+\\dfrac{3e^{-t}}{8}\\Big)"
From equation (1), "3y = Dx+2x -1"
"\\begin{aligned}\n3y&=D\\Bigg(c_{1}e^{-5t}+c_2e^t-\\Big(\\dfrac{2}{5}+\\dfrac{3e^{-t}}{8}\\Big)\\Bigg) + 2\\Bigg(c_{1}e^{-5t}+c_2e^t-\\Big(\\dfrac{2}{5}+\\dfrac{3e^{-t}}{8}\\Big)\\Bigg) - 1\\\\\n3y &= -5c_{1}e^{-5t}+c_2e^t+\\dfrac{3e^{-t}}{8} + 2c_{1}e^{-5t}+2c_2e^t-\\dfrac{4}{5}+\\dfrac{3e^{-t}}{4}- 1\\\\\n3y &= -3c_{1}e^{-5t}+3c_2e^t-\\dfrac{3e^{-t}}{8} -\\dfrac{9}{5}\\\\\n\\therefore y(t)& = -c_{1}e^{-5t}+c_2e^t-\\dfrac{e^{-t}}{8} -\\dfrac{3}{5}\\\\\n\\end{aligned}"
Comments
Leave a comment