Find the complete integral of p - 3 x² = q² - y
The given equation is a separable equation of the form "f(x, p)=g(y, q)".
The complete solution will be, "z = \\int pdx + \\int qdy + c"
Let "f(x, p)=g(y, q) =a". Solving for "f(x, p)=a~ \\&~ g(y, q) =a", we get
"\\begin{aligned}\np-3x^2 &= a&; & ~q^2 -y = a\\\\\np&=3x^2 + a&; & ~q^2=y+a\\\\\np&=3x^2 + a&; & ~q=\\sqrt{y+a}\\\\ \n\\end{aligned}"
The complete solution is,
"\\begin{aligned}\nz &= \\int pdx + \\int qdy + c\\\\\nz &= \\int (3x^2 + a)dx + \\int (\\sqrt{y+a})dy + c\\\\\n&= x^{3} + ax + \\frac{2}{3}(y+a)^{\\frac{3}{2}} + c\n\\end{aligned}"
Comments
Leave a comment