Find the complete integral of p - 3 x² = q² - y
The given equation is a separable equation of the form f(x,p)=g(y,q)f(x, p)=g(y, q)f(x,p)=g(y,q).
The complete solution will be, z=∫pdx+∫qdy+cz = \int pdx + \int qdy + cz=∫pdx+∫qdy+c
Let f(x,p)=g(y,q)=af(x, p)=g(y, q) =af(x,p)=g(y,q)=a. Solving for f(x,p)=a & g(y,q)=af(x, p)=a~ \&~ g(y, q) =af(x,p)=a & g(y,q)=a, we get
p−3x2=a; q2−y=ap=3x2+a; q2=y+ap=3x2+a; q=y+a\begin{aligned} p-3x^2 &= a&; & ~q^2 -y = a\\ p&=3x^2 + a&; & ~q^2=y+a\\ p&=3x^2 + a&; & ~q=\sqrt{y+a}\\ \end{aligned}p−3x2pp=a=3x2+a=3x2+a;;; q2−y=a q2=y+a q=y+a
The complete solution is,
z=∫pdx+∫qdy+cz=∫(3x2+a)dx+∫(y+a)dy+c=x3+ax+23(y+a)32+c\begin{aligned} z &= \int pdx + \int qdy + c\\ z &= \int (3x^2 + a)dx + \int (\sqrt{y+a})dy + c\\ &= x^{3} + ax + \frac{2}{3}(y+a)^{\frac{3}{2}} + c \end{aligned}zz=∫pdx+∫qdy+c=∫(3x2+a)dx+∫(y+a)dy+c=x3+ax+32(y+a)23+c
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments