solve the initial value problem y''-4y'+4y=64sin2t for y(0)=0 and y'(0)=1
"\\text{Solve } \\frac{d^{2} y(t)}{d t^{2}}-4 \\frac{d y(t)}{d t}+4 y(t)=64 \\sin (2 t), \\text{ such that } y(0)=0 \\text{ and } y^{\\prime}(0)=1 :\\\\[4mm]\n\\text{The general solution will be the sum of the complementary solution and particular solution.}\\\\\n\\text{ Find the complementary solution by solving } \\frac{d^{2} y(t)}{d t^{2}}-4 \\frac{d y(t)}{d t}+4 y(t)=0 :\\\\\n\\text{Assume a solution will be proportional to } e^{\\lambda t} \\text{ for some constant }\\lambda.\\\\[4mm]\n\\text{Substitute } y(t)=e^{\\lambda t} \\text{ into the differential equation:}\\\\\n\\frac{d^{2}}{d t^{2}}\\left(e^{x t}\\right)-4 \\frac{d}{d t}\\left(e^{x t}\\right)+4 e^{\\lambda t}=0\\\\[4mm]\n\\text{Substitute } \\frac{d^{2}}{d t^{2}}\\left(e^{\\lambda t}\\right)=\\lambda^{2} e^{\\lambda t} \\text{ and } \\frac{d}{d t}\\left(e^{\\lambda t}\\right)=\\lambda e^{\\lambda t}\\\\\n\\lambda^{2} e^{\\lambda t}-4 \\lambda e^{\\lambda t}+4 e^{\\lambda t}=0\\\\[4mm]\n\\text{Factor out } e^{\\lambda t}\\\\[2mm]\n\n\\left(\\lambda^{2}-4 \\lambda+4\\right) e^{\\lambda t}=0\\\\\n\n\\text{Since } e^{\\lambda t} \\neq 0 \\text{for any finite } \\lambda, \\text{ the zeros must come from the polynomial:}\\\\[2mm]\n\\lambda^{2}-4 \\lambda+4=0"
"\\text{Factor:}\\\\\n(\\lambda-2)^{2}=0\\\\[4mm]\n\\text{Solve for } \\lambda :\\\\[2mm]\n\\lambda=2 \\text { or } \\lambda=2\\\\[4mm]\n\\text{The multiplicity of the root } \\lambda=2 \\text{ is }2 \\text{ which gives } y_{1}(t)=c_{1} e^{2 t}, y_{2}(t)=c_{2} e^{2 t} t \\text{ as solutions, where } c_{1} \\text{ and } c_{2} \\text{ are arbitrary constants.}\\\\[4mm]\n\\text{The general solution is the sum of the above solutions:}\\\\[2mm]\ny(t)=y_{1}(t)+y_{2}(t)=c_{1} e^{2 t}+c_{2} e^{2 t} t\\\\[4mm]\n\\text{Determine the particular solution to } \\frac{d^{2} y(t)}{d t^{2}}-4 \\frac{d y(t)}{d t}+4 y(t)=64 \\sin (2 t) \\text{ by the method of undetermined coefficients:}\\\\[4mm]\n\\text{The particular solution to } \\frac{d^{2} y(t)}{d t^{2}}-4 \\frac{d y(t)}{d t}+4 y(t)=64 \\sin (2 t) \\text{ is of the form: } y_{p}(t)=a_{1} \\cos (2 t)+a_{2} \\sin (2 t)\\\\[4mm]\n\\text{Solve for the unknown constants } a_{1} \\text{ and } a_{2} :\\\\[4mm]\n\\text{Compute } \\frac{d y_{p}(t)}{d t} :\\\\\n\\begin{aligned}\n\\frac{d y_{p}(t)}{d t} &=\\frac{d}{d t}\\left(a_{1} \\cos (2 t)+a_{2} \\sin (2 t)\\right) \\\\\n&=-2 a_{1} \\sin (2 t)+2 a_{2} \\cos (2 t)\n\\end{aligned}\\\\"
"\\text{Compute } \\frac{d^{2} y_{p}(t)}{d t^{2}} :\\\\[2mm]\n\\frac{d^{2} y_{p}(t)}{d t^{2}} =\\frac{d^{2}}{d t^{2}}\\left(a_{1} \\cos (2 t)+a_{2} \\sin (2 t)\\right)\\\\\n\\qquad \\;\\; =-4 a_{1} \\cos (2 t)-4 a_{2} \\sin (2 t)\\\\[4mm]\n\\text{Substitute the particular solution } y_{p}(t) \\text{ into the differential equation:}\\\\[2mm]\n\\begin{aligned}\n&\\frac{d^{2} y_{p}(t)}{d t^{2}}-4 \\frac{d y_{p}(t)}{d t}+4 y_{p}(t)=64 \\sin (2 t) \\\\\n&-4 a_{1} \\cos (2 t)-4 a_{2} \\sin (2 t)- \\\\\n&\\quad 4\\left(-2 a_{1} \\sin (2 t)+2 a_{2} \\cos (2 t)\\right)+4\\left(a_{1} \\cos (2 t)+a_{2} \\sin (2 t)\\right)=64 \\sin (2 t)\n\\end{aligned}\\\\[4mm]\n\\text{ Simplify:}\\\\[2mm]\n-8 a_{2} \\cos (2 t)+8 a_{1} \\sin (2 t)=64 \\sin (2 t)\\\\[4mm]\n\\text{Equate the coefficients of } \\cos (2 t) \\text{ on both sides of the equation:}\\\\[2mm]\n-8 a_{2}=0\\\\[4mm]\n\\text{Equate the coefficients of } \\sin (2 t) \\text{ on both sides of the equation:}\\\\[2mm]\n8 a_{1}=64\\\\[4mm]\n\\text{Solve the system:}\\\\[2mm]\n\\begin{aligned}\n&a_{1}=8 \\\\\n&a_{2}=0\n\\end{aligned}"
"\\text{Substitute } a_{1} \\text{ and } a_{2} \\text{ into} y_{p}(t)=\\cos (2 t) a_{1}+\\sin (2 t) a_{2} :\\\\[2mm]\n\ny_{p}(t)=8 \\cos (2 t)\\\\[4mm]\n \n\\text{ The general solution is: }\\\\[2mm]\ny(t)=y_{c}(t)+y_{p}(t)=8 \\cos (2 t)+c_{1} e^{2 t}+c_{2} e^{2 t} t\\\\[4mm]\n\n\\text{ Solve for the unknown constants using the initial conditions: }\\\\[2mm]\n\\text{ Compute }\\frac{d y(t)}{d t} :\\\\[2mm]\n\n\\begin{aligned}\n\\frac{d y(t)}{d t} &=\\frac{d}{d t}\\left(8 \\cos (2 t)+c_{1} e^{2 t}+c_{2} e^{2 t} t\\right) \\\\\n&=-16 \\sin (2 t)+2 c_{1} e^{2 t}+c_{2} e^{2 t}+2 c_{2} e^{2 t} t\n\\end{aligned}\\\\[4mm]\n\n\\text{ Substitute } y(0)=0 \\text{ into } y(t)=8 \\cos (2 t)+e^{2 t} c_{1}+e^{2 t} t c_{2} :\\\\[2mm]\n\nc_{1}+8=0\\\\[4mm]\n\n\\text{Substitute } y^{\\prime}(0)=1 \\text{ into } \\frac{d y(t)}{d t}=-16 \\sin (2 t)+2 e^{2 t} c_{1}+e^{2 t} c_{2}+2 e^{2 t} t c_{2} :\\\\[2mm]\n\n2 c_{1}+c_{2}=1\\\\[4mm]\n\n\\text{ Solve the system:}\\\\[2mm]\n\n\\begin{aligned}\n&\\mathcal{c}_{1}=-8 \\\\\n&\\mathcal{c}_{2}=17\n\\end{aligned}\n\n\\text{Substitute } c_{1}=-8 \\text{ and } c_{2}=17 \\text{ into } y(t)=8 \\cos (2 t)+e^{2 t} c_{1}+e^{2 t} t c_{2}\\\\[4mm]\n\\text{ Answer:}\\\\[4mm]\n\ny(t)=8 \\cos (2 t)+e^{2 t}(17 t-8)"
Comments
Leave a comment