Solution;
According to Newton's law of cooling;
−dtdTα(T−Ts)
dtdT=−k(T−Ts)
Integrating;
∫T−TsdT=−k∫dt
ln(T−Ts)=−kt
T−Ts=e−kt+C
T(t)=Ts+Ce−kt
Ts=298k
Boundary conditions;
t=0,T=478k
t=20,T=428
478=298+Ce0
C=478−298=180
Also;
428478=Ce−20kCeo
e20k=1.116
k=0.00552
Therefore;
T(t)=298+180e−0.00552t
At 405,t=?;
405=298+180e−0.00552t
107=180e−0.00552t
ln(180107)=−0.0055t
t=94.23minutes
Comments