Question #309160



according to newton's law of cooling the rate at which a substance cools in moving air is proportional to the difference between the temperature of the substance and that of the year if the temperature of the year is 298 k a and the substance cools from 478 k to 428 k in 20 minutes. find when the temperature will be 405 k

1
Expert's answer
2022-03-11T13:42:10-0500

Solution;

According to Newton's law of cooling;

dTdtα(TTs)-\frac{dT}{dt}\alpha(T-T_s)

dTdt=k(TTs)\frac{dT}{dt}=-k(T-T_s)

Integrating;

dTTTs=kdt\int\frac{dT}{T-T_s}=-k\int dt

ln(TTs)=ktln(T-T_s)=-kt

TTs=ekt+CT-T_s=e^{-kt}+C

T(t)=Ts+CektT(t)=T_s+Ce^{-kt}

Ts=298kT_s=298k

Boundary conditions;

t=0,T=478kt=0,T=478k

t=20,T=428t=20,T=428

478=298+Ce0478=298+Ce^0

C=478298=180C=478-298=180

Also;

478428=CeoCe20k\frac{478}{428}=\frac{Ce^o}{Ce^{-20k}}

e20k=1.116e^{20k}=1.116

k=0.00552k=0.00552

Therefore;

T(t)=298+180e0.00552tT(t)=298+180e^{-0.00552t}

At 405,t=?;

405=298+180e0.00552t405=298+180e^{-0.00552t}

107=180e0.00552t107=180e^{-0.00552t}

ln(107180)=0.0055tln(\frac{107}{180})=-0.0055t

t=94.23minutest=94.23minutes


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS