The complementary function is C.F=c1e−2x+c2e−2x
Particular Integral=2D2+5D+21e−2x=2(−21)2+5(−21)+21e−2x(Replace D by −21)=x4D+51e−2x(Rule failed in the above step)=3xe−2x(Replace D by −21)
The general solution is y=c1e−2x+c2e−2x+3xe−2x
b. The auxiliary equation is, m3−3m2+4m−2=0. Using synthetic division,
1101−31−24−22−22∣0
∴m3−3m2+4m−2=(m−1)(m2−2m+2)=0⟹m=1,m2−2m+2=0.
Solving the quadratic,
m=22±22−4×1×2=22±2i=1±i .
Hence the complementary function is,
C.F=c1ex+ex(c2cosx+c3sinx)
Particular Integral=D3−3D2+4D−21cosx=−D+3+4D−21cosx(Replacing D2 by −1)=1+3D1cosx=1−9D21−3Dcosx(Multiplying the conjugate)=10cosx−3D(cosx)(Replacing D2 by −1)=10cosx+3sinx
Comments