Question #309904

1.Solve the differential equation (2𝐷2 + 5𝐷 + 2)𝑦 = 𝑒-1/ 2 x



2. Solve the differential equation (𝐷3 − 3𝐷2 + 4𝐷 − 2)𝑦 = 𝑐𝑜𝑠𝗑.



1
Expert's answer
2022-03-14T12:35:29-0400

1. The auxiliary equation is, 2m2+5m+2=02m^2 + 5m+2=0.


Solving the equation we get, m=12,2m = -\frac{1}{2}, -2


The complementary function is C.F=c1ex2+c2e2x\text{C.F} = c_1 e^{-\frac{x}{2}} + c_2 e^{-2x}


Particular Integral=12D2+5D+2ex2=12(12)2+5(12)+2ex2  (Replace D by 12)=x14D+5ex2   (Rule failed in the above step)=xex23  (Replace D by 12)\begin{aligned} \text{Particular Integral} &= \frac{1}{2D^2+5D+2}e^{-\frac{x}{2}}\\ &= \frac{1}{2(-\frac{1}{2})^2+5(-\frac{1}{2})+2}e^{-\frac{x}{2}}~~(\text{Replace D by }-\frac{1}{2})\\ &=x \frac{1}{4D+5}e^{-\frac{x}{2}}~~~ (\text{Rule failed in the above step})\\ &=\frac{x e^{-\frac{x}{2}}}{3}~~(\text{Replace D by }-\frac{1}{2})\\ \end{aligned}

The general solution is y=c1ex2+c2e2x+xex23y = c_1 e^{-\frac{x}{2}} + c_{2}e^{-2x} + \dfrac{xe^{-\frac{x}{2}}}{3}


b. The auxiliary equation is, m33m2+4m2=0.m^3-3m^2+4m-2=0. Using synthetic division,


113420  12   21 2  2 0\begin{array}{c|ccc} 1&1 &-3 & 4 & -2\\ & 0 & ~~1 & -2 & ~~~2\\ \hline &1 & ~-2 & ~~2 & \mid~0\\ \hline \end{array}


m33m2+4m2=(m1)(m22m+2)=0    m=1,m22m+2=0.\therefore m^3-3m^2+4m-2 = (m-1)(m^2-2m+2) = 0 \implies m = 1, \\ m^2-2m+2 =0.\\

Solving the quadratic,


m=2±224×1×22=2±2i2=1±im = \dfrac{2\pm\sqrt{2^2-4\times1\times2}}{2} = \dfrac{2\pm2i}{2} = 1\pm i .


Hence the complementary function is,

C.F=c1ex+ex(c2cosx+c3sinx)\text{C.F} = c_1e^{x} + e^{x}(c_2 \cos x + c_3 \sin x)

Particular Integral=1D33D2+4D2cosx=1D+3+4D2cosx  (Replacing D2 by 1)=11+3Dcosx=13D19D2cosx           (Multiplying the conjugate)=cosx3D(cosx)10     (Replacing D2 by 1)=cosx+3sinx10\begin{aligned} \text{Particular Integral} &= \frac{1}{D^3 - 3D^2+4D-2}\cos x \\ &= \frac{1}{-D + 3 + 4D - 2}\cos x ~~(\text{Replacing $D^2$ by $-1$})\\ &= \frac{1}{1 + 3D}\cos x\\ &= \frac{1-3D}{1 - 9D^{2}}\cos x~~~~~~~~~~~(\text{Multiplying the conjugate})\\ &= \frac{\cos x - 3D(\cos x)}{10}~~~~~(\text{Replacing $D^2$ by $-1$})\\ &=\frac{\cos x + 3\sin x}{10}\\ \end{aligned}

The general solution is,


y=ex(c1+c2cosx+c3sinx)+cosx+3sinx10y = e^x(c_1 + c_{2} \cos x + c_3 \sin x) + \dfrac{\cos x + 3\sin x}{10}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS