The given equation can be rewritten as, d S d t − S 2 t = 5 2 t 3 S 3 \dfrac{dS}{dt} - \dfrac{S}{2t} = \dfrac{5}{2}t^3 S^3 d t d S − 2 t S = 2 5 t 3 S 3 which is a Bernoulli's equation.
Dividing the equation by S 3 S^3 S 3 we get 1 S 3 d S d t − 1 2 S 2 t = 5 2 t 3 \dfrac{1}{S^3}\dfrac{dS}{dt} - \dfrac{1}{2S^2t} = \dfrac{5}{2}t^3 S 3 1 d t d S − 2 S 2 t 1 = 2 5 t 3
Put z = 1 S 2 z = \dfrac{1}{S^2} z = S 2 1 . Then d z d t = − 2 S 3 d S d t \dfrac{dz}{dt} = -\dfrac{2}{S^3}\dfrac{dS}{dt} d t d z = − S 3 2 d t d S and hence the equation becomes,
d z d t + 2 v t = − 5 t 3 \dfrac{dz}{dt} + \dfrac{2v}{t} = -5t^3 d t d z + t 2 v = − 5 t 3 which is linear in z z z .
The solution is given by,
z e ∫ P d t = ∫ Q e ∫ P d t d t + c z e ∫ 2 t d t = − ∫ 5 t 3 e ∫ 2 t d t d t + c ( P = 2 t ; Q = − 5 t 3 ) z t 2 = − ∫ 5 t 3 ⋅ t 2 d t + c z t 2 = − 5 t 6 6 + c z = − 5 t 4 6 + c t 2 = − 5 t 6 + 6 c 6 t 2 1 S 2 = − 5 t 6 + 6 c 6 t 2 ( Replacing z = 1 S 2 ) S 2 = 6 t 2 − 5 t 6 + 6 c ∴ S = ± 6 t 2 − 5 t 6 + 6 c \begin{aligned}
ze^{\int Pdt} &= \int Q e^{\int Pdt} dt + c\\
ze^{\int \frac{2}{t}dt} &= -\int 5t^3 e^{\int \frac{2}{t} dt} dt + c\quad(P = \frac{2}{t}; Q = -5t^3)\\
zt^2 & = -\int 5t^3 \cdot t^2 dt + c\\
zt^2 & = -\frac{5t^6}{6} + c\\
z &= -\frac{5t^4}{6} + \frac{c}{t^2} = \frac{-5t^6+6c}{6t^2}\\
\frac{1}{S^2} &= \frac{-5t^6+6c}{6t^2}\qquad (\text{Replacing ~} z = \frac{1}{S^2})\\
S^{2} &= \frac{6t^2}{-5t^6+6c}\\
\therefore S& = \pm\sqrt{\frac{6t^2}{-5t^6+6c}}
\end{aligned} z e ∫ P d t z e ∫ t 2 d t z t 2 z t 2 z S 2 1 S 2 ∴ S = ∫ Q e ∫ P d t d t + c = − ∫ 5 t 3 e ∫ t 2 d t d t + c ( P = t 2 ; Q = − 5 t 3 ) = − ∫ 5 t 3 ⋅ t 2 d t + c = − 6 5 t 6 + c = − 6 5 t 4 + t 2 c = 6 t 2 − 5 t 6 + 6 c = 6 t 2 − 5 t 6 + 6 c ( Replacing z = S 2 1 ) = − 5 t 6 + 6 c 6 t 2 = ± − 5 t 6 + 6 c 6 t 2
Comments