Question #305032

Find the complete solution of:



1.) (x ^ 2 y + y ^ 3 - y) d x + (x ^ 3 + xy ^ 2 + x) dy = 0

1
Expert's answer
2022-03-07T10:46:02-0500
(x2y+y3y)dx+(x3+xy2+x)dy=0(x2y+y3y)dx=(x3+xy2+x)dy(1/3+1)d[x3y+x(y3y)]=(1/3+1)d[xy3+y(x3+x)]d[x3y+x(y3y)]=d[xy3+y(x3+x)]d[x3y+x(y3y)]=d[xy3+y(x3+x)]x3y+x(y3y)=xy3+y(x3+x)+C,Cconstx3y+xy3xy=xy3+x3y+xy+C2xy32xy=Cxy3xy=C/2=C1,C1constx(y3y)=C1x=C1/(y3y)(x^2y+y^3-y)dx+(x^3+xy^2+x)dy=0\\ (x^2y+y^3-y)dx=-(x^3+xy^2+x)dy\\ (1/3+1)d[x^3y+x(y^3-y)]=-(1/3+1)d[xy^3+y(x^3+x)]\\ d[x^3y+x(y^3-y)]=-d[xy^3+y(x^3+x)]\\ \intop{d[x^3y+x(y^3-y)]}=\intop{-d[xy^3+y(x^3+x)]}\\ x^3y+x(y^3-y)=-xy^3+y(x^3+x)+C, C-const\\ x^3y+xy^3-xy=-xy^3+x^3y+xy+C\\ 2xy^3-2xy=C\\ xy^3-xy=C/2=C_1, C_1-const\\ x(y^3-y)=C_1\\ x=C_1/(y^3-y)

Answer: x=C1/(y3y),С1constx=C_1/(y^3-y), С_1-const and (x=0,y=0) is also a solution.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS