(x2y+y3−y)dx+(x3+xy2+x)dy=0(x2y+y3−y)dx=−(x3+xy2+x)dy(1/3+1)d[x3y+x(y3−y)]=−(1/3+1)d[xy3+y(x3+x)]d[x3y+x(y3−y)]=−d[xy3+y(x3+x)]∫d[x3y+x(y3−y)]=∫−d[xy3+y(x3+x)]x3y+x(y3−y)=−xy3+y(x3+x)+C,C−constx3y+xy3−xy=−xy3+x3y+xy+C2xy3−2xy=Cxy3−xy=C/2=C1,C1−constx(y3−y)=C1x=C1/(y3−y)
Answer: x=C1/(y3−y),С1−const and (x=0,y=0) is also a solution.
Comments