Answer to Question #305049 in Differential Equations for One

Question #305049

Find the complete solution of xdy + (x ^ 3 - xy ^ 2 - y) dy = 0

1
Expert's answer
2022-03-07T16:20:01-0500
xdy+(x3xy2y)dy=0(x3xy2y)dy=xdy(11/21/3)d[x3y+xy3+y2]=d[xy]1/6d[x3y+xy3+y2]=d[xy]d[x3y+xy3+y2]=6d[]x3y+xy3+y2=6xy+C,Cconstx3y+xy3+y2+6xy=C,Cconstxdy+(x^3-xy^2-y)dy=0\\ (x^3-xy^2-y)dy=-xdy\\ (1-1/2-1/3)d[x^3y+xy^3+y^2]=-d[xy]\\ \intop{1/6d[x^3y+xy^3+y^2]}=\intop{-d[xy]}\\ \intop{d[x^3y+xy^3+y^2]}=\intop{-6d[]}\\ x^3y+xy^3+y^2=-6xy+C, C-const\\ x^3y+xy^3+y^2+6xy=C, C-const\\

Answer: x3y+xy3+y2+6xy=C,Cconstx^3y+xy^3+y^2+6xy=C, C-const and (x=0,y=0) is also a solution.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment