Question #305108

Find the particular solution of:

1.) x^2 y' -2xy=x^4 +3; where y = 2 and x = 1


1
Expert's answer
2022-03-08T02:20:02-0500
x2y2xy=x4+3x^2y'-2xy=x^4+3

y2x=x2+3x2y'-\dfrac{2}{x}=x^2+\dfrac{3}{x^2}

I.F.=e(2/x)dx=1x2I.F.=e^{\int(-2/x)dx}=\dfrac{1}{x^2}

1x2(y2x)=1x2(x2+3x2)\dfrac{1}{x^2}(y'-\dfrac{2}{x})=\dfrac{1}{x^2}(x^2+\dfrac{3}{x^2})


d(yx2)=(1+3x4)dxd(\dfrac{y}{x^2})=(1+\dfrac{3}{x^4})dx

Integrate


d(yx2)=(1+3x4)dx\int d(\dfrac{y}{x^2})=\int(1+\dfrac{3}{x^4})dx

yx2=x1x3+C\dfrac{y}{x^2}=x-\dfrac{1}{x^3}+C

y=x31x+Cx2y=x^3-\dfrac{1}{x}+Cx^2

y=2,x=1y = 2,x = 1


2=1311+C(1)22=1^3-\dfrac{1}{1}+C(1)^2

C=2C=2

The particular solution is


y=x31x+2x2y=x^3-\dfrac{1}{x}+2x^2

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS