Let
y(x)=∑n=0∞anxn
dxdy=∑n=1∞nanxn−1=∑n=0∞(n+1)an+1xn
Substitution into equation:
∑n=0∞(n+1)an+1xn+1=∑n=0∞anxn
∑n=1∞nanxn−∑n=0∞anxn=0
−a0+∑n=1∞nanxn−∑n=1∞anxn=0
Coefficients near xn are equal to zero.
n=0: a0=0
n=1: a1 - a1=0 => a1 is arbitrary constant C
n>1: nan - an=0 => (n-1)an=0 => an = 0
Therefore for arbitrary a1 = C and an = 0 for any n≠1 we will get solution y(x) = Cx
Answer
y(x) = Cx
Comments