Find a power series solution of xy'=y
Let
"y\\left(x\\right)=\\sum_{n=0}^{\\infty}{a_nx^n}"
"\\frac{dy}{dx}=\\sum_{n=1}^{\\infty}{na_nx^{n-1}}=\\sum_{n=0}^{\\infty}{\\left(n+1\\right)a_{n+1}x^n}"
Substitution into equation:
"\\sum_{n=0}^{\\infty}{\\left(n+1\\right)a_{n+1}x^{n+1}}=\\sum_{n=0}^{\\infty}{a_nx^n}"
"\\sum_{n=1}^{\\infty}{na_nx^n}-\\sum_{n=0}^{\\infty}{a_nx^n}=0"
"-a_0+\\sum_{n=1}^{\\infty}{na_nx^n}-\\sum_{n=1}^{\\infty}{a_nx^n}=0"
Coefficients near xn are equal to zero.
n=0: a0=0
n=1: a1 - a1=0 => a1 is arbitrary constant C
n>1: nan - an=0 => (n-1)an=0 => an = 0
Therefore for arbitrary a1 = C and an = 0 for any n≠1 we will get solution y(x) = Cx
Answer
y(x) = Cx
Comments
Leave a comment