Question #289535

Find a power series solution of xy'=y​

1
Expert's answer
2022-01-30T15:08:48-0500

Let

y(x)=n=0anxny\left(x\right)=\sum_{n=0}^{\infty}{a_nx^n}

dydx=n=1nanxn1=n=0(n+1)an+1xn\frac{dy}{dx}=\sum_{n=1}^{\infty}{na_nx^{n-1}}=\sum_{n=0}^{\infty}{\left(n+1\right)a_{n+1}x^n}

Substitution into equation:

n=0(n+1)an+1xn+1=n=0anxn\sum_{n=0}^{\infty}{\left(n+1\right)a_{n+1}x^{n+1}}=\sum_{n=0}^{\infty}{a_nx^n}

n=1nanxnn=0anxn=0\sum_{n=1}^{\infty}{na_nx^n}-\sum_{n=0}^{\infty}{a_nx^n}=0

a0+n=1nanxnn=1anxn=0-a_0+\sum_{n=1}^{\infty}{na_nx^n}-\sum_{n=1}^{\infty}{a_nx^n}=0

Coefficients near xn are equal to zero.

n=0: a0=0  

n=1: a1 - a1=0   =>  a1 is arbitrary constant C

n>1: nan - an=0  =>  (n-1)an=0  =>  an = 0 

Therefore for arbitrary a1 = C and an = 0 for any n≠1 we will get solution y(x) = Cx

Answer

y(x) = Cx


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS