f ( x , y , z , p , q ) = p 2 + q 2 − 2 p x − 2 q y + 1 = 0 f(x, y, z, p, q)=p^{2}+q^{2}-2 p x-2 q y+1=0 f ( x , y , z , p , q ) = p 2 + q 2 − 2 p x − 2 q y + 1 = 0
Charpit's auxiliary equation are:
d p f x + p f z = d q f y + q f z = d z − p f p − q f q = d x − f p = d y − f q \frac{d p}{f_{x}+p f_{z}}=\frac{d q}{f_{y}+q f_{z}}=\frac{d z}{-p f_{p}-q f_{q}}=\frac{d x}{-f_{p}}=\frac{d y}{-f_{q}} f x + p f z d p = f y + q f z d q = − p f p − q f q d z = − f p d x = − f q d y
or
d p p = d q q = d z p ( p − x ) + q ( q − y ) = d x p − x = d y q − y \frac{d p}{p}=\frac{d q}{q}=\frac{d z}{p(p-x)+q(q-y)}=\frac{d x}{p-x}=\frac{d y}{q-y} p d p = q d q = p ( p − x ) + q ( q − y ) d z = p − x d x = q − y d y
Taking first two fractions,
d p p = d q q \frac{d p}{p}=\frac{d q}{q} p d p = q d q
Integrating, ln p = ln q + ln a o r p = a q . \ln p=\ln q+\ln a \quad or \quad p=a q. ln p = ln q + ln a or p = a q .
Putting p = a q p=a q p = a q into f(x, y, z, p, q), we get:
a 2 q 2 + q 2 − 2 a q x − 2 q y + 1 = 0 q 2 ( a 2 + 1 ) − 2 q ( a x + y ) + 1 = 0 \begin{aligned}
&a^{2} q^{2}+q^{2}-2 a q x-2 q y+1=0 \\
&q^{2}\left(a^{2}+1\right)-2 q(a x+y)+1=0
\end{aligned} a 2 q 2 + q 2 − 2 a q x − 2 q y + 1 = 0 q 2 ( a 2 + 1 ) − 2 q ( a x + y ) + 1 = 0
Solve for q
q = 2 ( a x + y ) ± 4 ( a x + y ) 2 − 4 ( a 2 + 1 ) 2 ( a 2 + 1 ) q=\frac{2(a x+y) \pm \sqrt{4(a x+y)^{2}-4\left(a^{2}+1\right)}}{2\left(a^{2}+1\right)} q = 2 ( a 2 + 1 ) 2 ( a x + y ) ± 4 ( a x + y ) 2 − 4 ( a 2 + 1 )
Let's ( a x + y ) = u (a x+y)=u ( a x + y ) = u and ( a 2 + 1 ) = b = \left(a^{2}+1\right)=b= ( a 2 + 1 ) = b = const
q = u ± u 2 − b b q=\frac{u \pm \sqrt{u^{2}-b}}{b} q = b u ± u 2 − b
p = a q = a b ( u ± u 2 − b ) p=a q=\frac{a}{b}\left(u \pm \sqrt{u^{2}-b}\right) p = a q = b a ( u ± u 2 − b )
We know that
d z = p d x + q d y = a q d x + q d y = q ( a d x + d y ) = q d ( a x + y ) = q d u d z=p d x+q d y=a q d x+q d y=q(a d x+d y)=q d(a x+y)=q d u d z = p d x + q d y = a q d x + q d y = q ( a d x + d y ) = q d ( a x + y ) = q d u
Integrating
z = ∫ u ± u 2 − b b d u = u 2 2 b ± 1 b ∫ u 2 − b d u = z=\int \frac{u \pm \sqrt{u^{2}-b}}{b} d u=\frac{u^{2}}{2 b} \pm \frac{1}{b} \int \sqrt{u^{2}-b} d u= z = ∫ b u ± u 2 − b d u = 2 b u 2 ± b 1 ∫ u 2 − b d u =
= u 2 2 b ± 1 2 u u 2 − b − 1 2 b ln ( u 2 − b + u ) + C = = ( a x + y ) 2 2 b ± 1 2 ( a x + y ) ( a x + y ) 2 − b − 1 2 b ln ( ( a x + y ) 2 − b + ( a x + y ) ) + C \begin{aligned}
&\quad=\frac{u^{2}}{2 b} \pm \frac{1}{2} u \sqrt{u^{2}-b}-\frac{1}{2} b \ln \left(\sqrt{u^{2}-b}+u\right)+C= \\
&\quad=\frac{(a x+y)^{2}}{2 b} \pm \frac{1}{2}(a x+y) \sqrt{(a x+y)^{2}-b}-\frac{1}{2} b \ln \left(\sqrt{(a x+y)^{2}-b}+(a x+y)\right)+C
\end{aligned} = 2 b u 2 ± 2 1 u u 2 − b − 2 1 b ln ( u 2 − b + u ) + C = = 2 b ( a x + y ) 2 ± 2 1 ( a x + y ) ( a x + y ) 2 − b − 2 1 b ln ( ( a x + y ) 2 − b + ( a x + y ) ) + C
Comments