Find the integral curves of the differential equation:
(D³-D'³) z=x³y³
The given equation can be written as
"(D^3 \u2013 D'^3)z = x^3y^3" --------(1)
Corresponding auxiliary equation is
"m^3 \u2013 1 = 0" , i.e "(m \u2013 1)(m^2 + m + 1) = 0"
or
"(m \u2013 1)(m \u2013 w)(m \u2013 w^2) = 0," for w to be the cube root of unity----(2)
"\\displaystyle C.F. = \u03c6_{1}(y + x) + \u03c6_2(y + wx) + \u03c6_3(y + w^2x)" -----(3)
Now
"\\displaystyle p.I=\\frac{1}{D^3-D^{\\prime3}}x^3y^3=\\frac{1}{D^3\\left[1-(\\frac{D\\prime}{D})^3\\right]}x^3y^3"
"=\\frac{1}{D^3}\\left[1-(\\frac{D\\prime}{D})^3\\right]^{-1}x^3y^3=\\frac{1}{D^3}\\left[1+\\frac{D^\\prime3}{D}+...\\right]x^3y^3"
"=\\frac{1}{D^3}x^3y^3+\\frac{D^\\prime3}{D^6}x^3y^3"
(on taking "\\frac{D^\\prime}{D}" to the powers to which y is appearing in
"F(x, y) = x^ny^m" i.e neglecting terms containing powers more than 3 in "D^\\prime"
"\\displaystyle =\\frac{x^6y^3}{4\\cdot5\\cdot6}+\\frac{6x^9}{4\\cdot5\\cdot6\\cdot7\\cdot8\\cdot9}"
"P.I\\displaystyle =\\frac{x^6y^3}{ 120}+\\frac{x^9}{ 10080}"
Hence complete solution
"\\displaystyle z=\u03c6_{1}(y+x)+\u03c6_{2}(y+wx)+\u03c6_{3}(y+w^2x)+\\frac{x^6y^3}{ 120}+\\frac{x^9}{ 10080}"
Comments
Leave a comment