zp2−y2p+y2q=0Letf(x,y,z,p,q)=zp2−y2p+y2q,thenfx=0,fy=−2yp+2yq,fz=p2,fp=2zp−y2,fq=y2Now, Charpit’s auxiliary equations are; −fpdx=−fqdy=−pfp−qfqdz=fx+pfzdp=fy+qfzdq⇒y2−2pzdx=−y2dy=py2−2p2z−qy2dz=p3dp=2yq−2yp+qp2dqFrom the second and fourth ratio, we get:−y2dy=p3dp⇒p=ay−2y,where a is an ar-bitrary constant.⇒0=zp2−y2p+y2q=z(ay−2y)2−y2(ay−2y)+y2q⇒q=ay−2y−y(ay−2)zBut,dz=pdx+qdy=(ay−2y)dx+(ay−2y−y(ay−2)z)dyMultiply both sides byyay−2,we have;(yay−2)dz=yydx+yydy−ay−2zay−2dy⇒(yay−2)dz=y23dx+y23dy−ay−2zay−2dy⇒(yay−2)dz=y23dx+y23dy−ay−2zdyIntegrating both sides yields:yzay−2=xy23+52y23−a2zay−2+b,(where b is an arbitrary constant)which is the solution.
Comments
Leave a comment