Answer to Question #289448 in Differential Equations for Pankaj

Question #289448

Using Charpit’s method, solve the equation:


zp²-y²p+y²q =0

1
Expert's answer
2022-01-25T14:39:34-0500

zp2y2p+y2q=0Let f(x,y,z,p,q)=zp2y2p+y2q, thenfx=0, fy=2yp+2yq, fz=p2, fp=2zpy2, fq=y2Now, Charpit’s auxiliary equations are; dxfp=dyfq=dzpfpqfq=dpfx+pfz=dqfy+qfzdxy22pz=dyy2=dzpy22p2zqy2=dpp3=dq2yq2yp+qp2From the second and fourth ratio, we get:dyy2=dpp3p=yay2,where a is an ar-bitrary constant.0=zp2y2p+y2q=z(yay2)2y2(yay2)+y2qq=yay2zy(ay2)But, dz=pdx+qdy=(yay2)dx+(yay2zy(ay2))dyMultiply both sides by yay2,we have;(yay2)dz=yy dx+yy dyzay2ay2 dy(yay2)dz=y32 dx+y32 dyzay2ay2 dy(yay2)dz=y32 dx+y32 dyzay2 dyIntegrating both sides yields:yzay2=xy32+2y3252zay2a+b, (where b is an arbitrary constant)which is the solution.\displaystyle zp^2-y^2p+y^2q=0\\ Let\ f(x,y,z,p,q)=zp^2-y^2p+y^2q,\ then\\ f_x=0,\ f_y=-2yp+2yq,\ f_z=p^2,\ f_p=2zp-y^2,\ f_q=y^2\\ \text{Now, Charpit's auxiliary equations are; }\\ \frac{dx}{-f_p}=\frac{dy}{-f_q}=\frac{dz}{-pf_p-qf_q}=\frac{dp}{f_x+pf_z}=\frac{dq}{f_y+qf_z}\\ \Rightarrow\frac{dx}{y^2-2pz}=\frac{dy}{-y^2}=\frac{dz}{py^2-2p^2z-qy^2}=\frac{dp}{p^3}=\frac{dq}{2yq-2yp+qp^2}\\ \text{From the second and fourth ratio, we get:} \frac{dy}{-y^2}=\frac{dp}{p^3}\Rightarrow p=\sqrt{\frac{y}{ay-2}}, \text{where a is an ar-}\\ \text{bitrary constant.}\\ \Rightarrow0=zp^2-y^2p+y^2q=z\left(\sqrt{\frac{y}{ay-2}}\right)^2-y^2\left(\sqrt{\frac{y}{ay-2}}\right)+y^2q\\ \Rightarrow q=\sqrt{\frac{y}{ay-2}}-\frac{z}{y(ay-2)}\\ But,\ dz=pdx+qdy=\left(\sqrt{\frac{y}{ay-2}}\right) dx+\left(\sqrt{\frac{y}{ay-2}}-\frac{z}{y(ay-2)}\right)dy\\ \text{Multiply both sides by}\ y\sqrt{ay-2}, \text{we have;}\\ (y\sqrt{ay-2})dz=y\sqrt{y}\ dx+y\sqrt{y}\ dy-\frac{z\sqrt{ay-2}}{ay-2}\ dy\\ \Rightarrow (y\sqrt{ay-2})dz=y^{\frac{3}{2}}\ dx+y^{\frac{3}{2}}\ dy-\frac{z\sqrt{ay-2}}{ay-2}\ dy\\ \Rightarrow (y\sqrt{ay-2})dz=y^{\frac{3}{2}}\ dx+y^{\frac{3}{2}}\ dy-\frac{z}{\sqrt{ay-2}}\ dy\\ \text{Integrating both sides yields:}\\ yz\sqrt{ay-2}=xy^{\frac{3}{2}}+\frac{2y^{\frac{3}{2}}}{5}-\frac{2z\sqrt{ay-2}}{a}+b,\ \text{(where b is an arbitrary constant)}\\ \text{which is the solution.}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment