Question #289440

Using the method of undetermined coefficients, solve the equation:


d²y/dx² -3dy/dx +2y=4x²

1
Expert's answer
2022-01-24T03:14:23-0500

d2ydx23dydx+2y=4x2{d2dx23ddx+2}y=4x2Letm=ddxThen, we have the auxiliary equationm23m+2=0m2m2m+2=0m(m1)2(m1)=0(m2)(m1)=0m=2,1Hence, we have the complementary functionC.F=C1ex+C2e2xwhereC1andC2are arbitrary constantsTo find the particular integeral bythe method of undetermined coefficientLet the particular integral be of the formyp=ax2+bx+cWe want to find a, b, c such thatyp3yp+2yp=4x2...()Fromyp=ax2+bx+c.We haveyp=2ax+byp=2aNow, substitute these values into eq(*) To have,2a3(2ax+b)+2(ax2+bx+c)=4x2Comparing powers. We have2ax2=4x2    2a=4    a=2(6a+2b)x=0x    12+2b=0    b=62a3b+2c=0    418+2c=0    2c=14    c=7Hence, P.I=yp=ax2+bx+c=2x2+6x+7Thus, the general solution isy(x)=C.F+P.Iy(x)=C1ex+C2e2x+2x2+6x+7whereC1andC2are arbitrary constants\frac{d²y}{dx²} - 3 \frac{dy}{dx} + 2y=4x²\\ \Big\{\frac{d²}{dx²} - 3 \frac{d}{dx} + 2\Big\}y=4x²\\ \text{Let} \, m = \frac{d}{dx} \\ \text{Then, we have the auxiliary equation}\\ m^2 - 3m + 2 = 0 \\ m^2 - m - 2m + 2 = 0 \\ m(m - 1) - 2(m - 1) = 0\\ (m - 2)(m - 1) = 0\\ m = 2,1 \\ \text{Hence, we have the complementary function}\\ C.F = C_1 e^x + C_2 e^{2x} \\ \text{where} \, C_1 \text{and} \, C_2 \, \text{are arbitrary constants} \\ \text{To find the particular integeral by}\\ \text{the method of undetermined coefficient}\\ \text{Let the particular integral be of the form}\\ y_p = ax^2 + bx + c \\ \text{We want to find a, b, c such that}\\ y''_p - 3y'_p + 2 y_p = 4x^2 . . . (*) \\ \text{From} \, y_p = ax^2 + bx + c \, \text{.We have}\\ y'p = 2ax + b \\ y''p = 2a \\ \text{Now, substitute these values into eq(*)}\\ \text{ To have,}\\ 2a - 3(2ax + b) + 2(ax^2 + bx + c) = 4x^2 \\ \text{Comparing powers. We have}\\ 2ax^2 = 4x^2 \, \implies \, 2a = 4 \, \implies a = 2\\ (-6a + 2b)x = 0x \, \implies -12 + 2b = 0\\ \implies b = 6\\ 2a - 3b + 2c = 0 \, \implies 4 - 18 + 2c = 0\\ \implies 2c = 14 \implies c = 7\\ \text{Hence, }\\ \text{P.I}\, = y_p = ax^2 + bx + c = 2x^2 + 6x + 7\\ \text{Thus, the general solution is}\\ y(x) = C.F + P.I \\ y(x) = C_1 e^x + C_2 e^{2x} + 2x^2 + 6x + 7 \\ \text{where} \, C_1 \, \text{and} \, C_2 \, \text{are arbitrary constants}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS