dx2d2y−3dxdy+2y=4x2{dx2d2−3dxd+2}y=4x2Letm=dxdThen, we have the auxiliary equationm2−3m+2=0m2−m−2m+2=0m(m−1)−2(m−1)=0(m−2)(m−1)=0m=2,1Hence, we have the complementary functionC.F=C1ex+C2e2xwhereC1andC2are arbitrary constantsTo find the particular integeral bythe method of undetermined coefficientLet the particular integral be of the formyp=ax2+bx+cWe want to find a, b, c such thatyp′′−3yp′+2yp=4x2...(∗)Fromyp=ax2+bx+c.We havey′p=2ax+by′′p=2aNow, substitute these values into eq(*) To have,2a−3(2ax+b)+2(ax2+bx+c)=4x2Comparing powers. We have2ax2=4x2⟹2a=4⟹a=2(−6a+2b)x=0x⟹−12+2b=0⟹b=62a−3b+2c=0⟹4−18+2c=0⟹2c=14⟹c=7Hence, P.I=yp=ax2+bx+c=2x2+6x+7Thus, the general solution isy(x)=C.F+P.Iy(x)=C1ex+C2e2x+2x2+6x+7whereC1andC2are arbitrary constants
Comments