Question #289439

Solve the equation :


(7y-3x+3)dy + (3y-7x+7)dx =0

1
Expert's answer
2022-01-24T02:49:00-0500

(7y-3x+3)dy + (3y-7x+7)dx =0

(3x-7y-3)dy=(3y-7x+7)dx

dydx=3y7x+73x7y3now,let x=x+h and y=y+kdydx=3y7x+3k7h+73x7y+3h7k3putting h=1 and k=0,we getdydx=3y7x3x7ynow,let y=vx so thatdydx=v+xdvdxwe havev+xdvdx=3vx7x3x7vxxdvdx=3v737vvxdvdx=3v73v+7v237vxdvdx=7v2737vdxx=37v7v27dvintegrating both sidesdxx=37v27dv7v7v27dvlnx+c=314lnv1v+112lnv21lnx+c=314lnyxy+x12ln(y)2(x)2(x)2Recall v=yxlnx+c=314lnyx314y+x12lnyx+12lny+x+12ln(x)2lnx+c=27lnyx57lny+x+12ln(x)22lnyx+5lny+x=C2lnyx+1+5lny+x1=C(Since y=y and x=(x1))\frac{dy}{dx}=\frac{3y-7x+7}{3x-7y-3}\\ now,let ~x=x'+h~and~y=y'+k\\ \frac{dy'}{dx'}=\frac{3y'-7x'+3k-7h+7}{3x'-7y'+3h-7k-3}\\ putting~h=1~and~k=0,we~get\\ \frac{dy'}{dx'}=\frac{3y'-7x'}{3x'-7y'}\\ now,let~ y'=vx'~so~that\\ \frac{dy'}{dx'}=v+x'\frac{dv}{dx'}\\ we~have\\ v+x'\frac{dv}{dx'}=\frac{3vx'-7x'}{3x'-7vx'}\\ x'\frac{dv}{dx'}=\frac{3v-7}{3-7v}-v\\ x'\frac{dv}{dx'}=\frac{3v-7-3v+7v^2}{3-7v}\\ x'\frac{dv}{dx'}=\frac{7v^2-7}{3-7v}\\ \frac{dx'}{x'}=\frac{3-7v}{7v^2-7}dv\\ integrating~both~sides\\ \int \frac{dx'}{x'}=\int \frac{3}{7v^2-7}dv-\int \frac{7v}{7v^2-7}dv\\ ln|x'|+c= \frac{3}{14}ln \frac{|v-1|}{|v+1|}-\frac{1}{2}ln|{v^2-1}|\\ ln|x'|+c= \frac{3}{14}ln \frac{|y'-x'|}{|y'+x'|}-\frac{1}{2} ln|\frac{(y')^2-(x')^2}{(x')^2}|\\ Recall~v=\frac{y'}{x'}\\ ln|x'|+c= \frac{3}{14}ln {|y'-x'|}- \frac{3}{14}{|y'+x'|}-\frac{1}{2} ln|{y'-x'}|+\frac{1}{2} ln|{y'+x'}+\frac{1}{2} ln|({x'})^2|\\ ln|x'|+c= -\frac{2}{7}ln {|y'-x'|}-\frac{5}{7}ln {|y'+x'|}+\frac{1}{2} ln|({x'})^2|\\ 2ln|y'-x'|+5ln|y'+x'|=C\\ 2ln|y-x+1|+5ln|y+x-1|=C\\ (Since~y'=y~and~x'=(x-1))


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS