Answer to Question #288874 in Differential Equations for Pankaj

Question #288874

Solve :


P² -2xyp + 4y²=0, where p=dy/dx

1
Expert's answer
2022-01-27T16:18:57-0500

Using quadratic formula;

p=(2xy)±(2xy)24(1)(4y2)2(1)=2xy±4x2y216y22=2xy±4y2(x24)2=2xy±2yx242=xy±yx24=y(x±x24)\displaystyle p=\frac{-(-2xy)\pm\sqrt{(-2xy)^2-4(1)(4y^2)}}{2(1)}\\ \quad=\frac{2xy\pm\sqrt{4x^2y^2-16y^2}}{2}\\ \quad=\frac{2xy\pm\sqrt{4y^2(x^2-4)}}{2}\\ \quad=\frac{2xy\pm2y\sqrt{x^2-4}}{2}\\ \quad=xy\pm y\sqrt{x^2-4}=y(x\pm\sqrt{x^2-4})\\

But, p=dydx\displaystyle p=\frac{dy}{dx}\\, thus we have;

dydx=y(x±x24)1ydydx=x±x24\displaystyle \frac{dy}{dx}=y(x\pm\sqrt{x^2-4})\\ \Rightarrow\frac{1}{y}\frac{dy}{dx}=x\pm\sqrt{x^2-4} , by method of separation of variable

Integrating both sides wrt x yields;

1ydydxdx=(x±x24)dx1ydy=x dx±x24 dx(1)\displaystyle \int\frac{1}{y}\frac{dy}{dx}dx=\int(x\pm\sqrt{x^2-4})dx\\ \int\frac{1}{y}dy=\int x\ dx\pm\int\sqrt{x^2-4}\ dx\qquad\cdots\cdots\cdots\cdots\cdots\cdots\cdots(1)


But,

x24 dx=4sinh2p dp\displaystyle \int\sqrt{x^2-4}\ dx=4\int\sinh^2p\ dp , where x=2coshp

=2(cosh2p1) dp\displaystyle =2\int(\cosh 2p-1)\ dp , since cosh2p=1+2sinh2p\displaystyle \cosh 2p=1+2\sinh^2p

=sinh2p2p=2sinhpcoshp=2×4x22×x22cosh1(x2)\displaystyle =\sinh 2p-2p=2\sinh p \cosh p=2\times\frac{\sqrt{4-x^2}}{2}\times\frac{x}{2}-2 \cosh^{-1}\left(\frac{x}{2}\right)

=xx2422cosh1(x2)(2)\displaystyle =\frac{x\sqrt{x^2-4}}{2}-2\cosh^{-1}\left(\frac{x}{2}\right)\qquad\cdots\cdots\cdots\cdots(2)

Substituting (2) into (1) yields;

logy=x22±[xx2422cosh1(x2)]+C,where C is an arbitrary constanty=Ae(x22±[xx2422cosh1(x2)]),where A=eC\displaystyle \log y=\frac{x^2}{2}\pm\left[\frac{x\sqrt{x^2-4}}{2}-2\cosh^{-1}\left(\frac{x}{2}\right)\right]+C, \text{where C is an arbitrary constant}\\ \Rightarrow y=Ae^{\left(\frac{x^2}{2}\pm\left[\frac{x\sqrt{x^2-4}}{2}-2\cosh^{-1}\left(\frac{x}{2}\right)\right]\right)}, \text{where }A=e^C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment