Using quadratic formula;
p = − ( − 2 x y ) ± ( − 2 x y ) 2 − 4 ( 1 ) ( 4 y 2 ) 2 ( 1 ) = 2 x y ± 4 x 2 y 2 − 16 y 2 2 = 2 x y ± 4 y 2 ( x 2 − 4 ) 2 = 2 x y ± 2 y x 2 − 4 2 = x y ± y x 2 − 4 = y ( x ± x 2 − 4 ) \displaystyle
p=\frac{-(-2xy)\pm\sqrt{(-2xy)^2-4(1)(4y^2)}}{2(1)}\\
\quad=\frac{2xy\pm\sqrt{4x^2y^2-16y^2}}{2}\\
\quad=\frac{2xy\pm\sqrt{4y^2(x^2-4)}}{2}\\
\quad=\frac{2xy\pm2y\sqrt{x^2-4}}{2}\\
\quad=xy\pm y\sqrt{x^2-4}=y(x\pm\sqrt{x^2-4})\\ p = 2 ( 1 ) − ( − 2 x y ) ± ( − 2 x y ) 2 − 4 ( 1 ) ( 4 y 2 ) = 2 2 x y ± 4 x 2 y 2 − 16 y 2 = 2 2 x y ± 4 y 2 ( x 2 − 4 ) = 2 2 x y ± 2 y x 2 − 4 = x y ± y x 2 − 4 = y ( x ± x 2 − 4 )
But, p = d y d x \displaystyle
p=\frac{dy}{dx}\\ p = d x d y , thus we have;
d y d x = y ( x ± x 2 − 4 ) ⇒ 1 y d y d x = x ± x 2 − 4 \displaystyle
\frac{dy}{dx}=y(x\pm\sqrt{x^2-4})\\
\Rightarrow\frac{1}{y}\frac{dy}{dx}=x\pm\sqrt{x^2-4} d x d y = y ( x ± x 2 − 4 ) ⇒ y 1 d x d y = x ± x 2 − 4 , by method of separation of variable
Integrating both sides wrt x yields;
∫ 1 y d y d x d x = ∫ ( x ± x 2 − 4 ) d x ∫ 1 y d y = ∫ x d x ± ∫ x 2 − 4 d x ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ( 1 ) \displaystyle
\int\frac{1}{y}\frac{dy}{dx}dx=\int(x\pm\sqrt{x^2-4})dx\\
\int\frac{1}{y}dy=\int x\ dx\pm\int\sqrt{x^2-4}\ dx\qquad\cdots\cdots\cdots\cdots\cdots\cdots\cdots(1) ∫ y 1 d x d y d x = ∫ ( x ± x 2 − 4 ) d x ∫ y 1 d y = ∫ x d x ± ∫ x 2 − 4 d x ⋯⋯⋯⋯⋯⋯⋯ ( 1 )
But,
∫ x 2 − 4 d x = 4 ∫ sinh 2 p d p \displaystyle
\int\sqrt{x^2-4}\ dx=4\int\sinh^2p\ dp ∫ x 2 − 4 d x = 4 ∫ sinh 2 p d p , where x=2coshp
= 2 ∫ ( cosh 2 p − 1 ) d p \displaystyle
=2\int(\cosh 2p-1)\ dp = 2 ∫ ( cosh 2 p − 1 ) d p , since cosh 2 p = 1 + 2 sinh 2 p \displaystyle
\cosh 2p=1+2\sinh^2p cosh 2 p = 1 + 2 sinh 2 p
= sinh 2 p − 2 p = 2 sinh p cosh p = 2 × 4 − x 2 2 × x 2 − 2 cosh − 1 ( x 2 ) \displaystyle
=\sinh 2p-2p=2\sinh p \cosh p=2\times\frac{\sqrt{4-x^2}}{2}\times\frac{x}{2}-2 \cosh^{-1}\left(\frac{x}{2}\right) = sinh 2 p − 2 p = 2 sinh p cosh p = 2 × 2 4 − x 2 × 2 x − 2 cosh − 1 ( 2 x )
= x x 2 − 4 2 − 2 cosh − 1 ( x 2 ) ⋯ ⋯ ⋯ ⋯ ( 2 ) \displaystyle
=\frac{x\sqrt{x^2-4}}{2}-2\cosh^{-1}\left(\frac{x}{2}\right)\qquad\cdots\cdots\cdots\cdots(2) = 2 x x 2 − 4 − 2 cosh − 1 ( 2 x ) ⋯⋯⋯⋯ ( 2 )
Substituting (2) into (1) yields;
log y = x 2 2 ± [ x x 2 − 4 2 − 2 cosh − 1 ( x 2 ) ] + C , where C is an arbitrary constant ⇒ y = A e ( x 2 2 ± [ x x 2 − 4 2 − 2 cosh − 1 ( x 2 ) ] ) , where A = e C \displaystyle
\log y=\frac{x^2}{2}\pm\left[\frac{x\sqrt{x^2-4}}{2}-2\cosh^{-1}\left(\frac{x}{2}\right)\right]+C, \text{where C is an arbitrary constant}\\
\Rightarrow y=Ae^{\left(\frac{x^2}{2}\pm\left[\frac{x\sqrt{x^2-4}}{2}-2\cosh^{-1}\left(\frac{x}{2}\right)\right]\right)}, \text{where }A=e^C log y = 2 x 2 ± [ 2 x x 2 − 4 − 2 cosh − 1 ( 2 x ) ] + C , where C is an arbitrary constant ⇒ y = A e ( 2 x 2 ± [ 2 x x 2 − 4 − 2 c o s h − 1 ( 2 x ) ] ) , where A = e C
Comments