Using quadratic formula;
p=2(1)−(−2xy)±(−2xy)2−4(1)(4y2)=22xy±4x2y2−16y2=22xy±4y2(x2−4)=22xy±2yx2−4=xy±yx2−4=y(x±x2−4)
But, p=dxdy, thus we have;
dxdy=y(x±x2−4)⇒y1dxdy=x±x2−4 , by method of separation of variable
Integrating both sides wrt x yields;
∫y1dxdydx=∫(x±x2−4)dx∫y1dy=∫x dx±∫x2−4 dx⋯⋯⋯⋯⋯⋯⋯(1)
But,
∫x2−4 dx=4∫sinh2p dp , where x=2coshp
=2∫(cosh2p−1) dp , since cosh2p=1+2sinh2p
=sinh2p−2p=2sinhpcoshp=2×24−x2×2x−2cosh−1(2x)
=2xx2−4−2cosh−1(2x)⋯⋯⋯⋯(2)
Substituting (2) into (1) yields;
logy=2x2±[2xx2−4−2cosh−1(2x)]+C,where C is an arbitrary constant⇒y=Ae(2x2±[2xx2−4−2cosh−1(2x)]),where A=eC
Comments
Leave a comment