Using the method of variation of parameters, solve the equation:
d²y/dx² +a²y = sec ax.
"\\text{ We have }\\\\\n\\left(D^{2}+a^{2}\\right) y=\\sec a x\\\\\n\\text{A.E. is } m^{2}+a^{2}=0 \\Rightarrow m=\\pm ai\\\\\n\\text{C.F. } =y_{c}=C_{1} \\cos a x+C 2 \\sin a x\\\\\ny=A \\cos a x+B \\sin a x \\ldots(1)\\\\\n\\text{ be the complete solution of the given equation where } A \\text{ and } B \\text{ are to be found.}\\\\\n\\text{We have, } y_{1}=\\cos a x, y_{2}=\\sin a x\\\\\ny_{1}^{\\prime}=-a \\sin a x, y_{2}^{\\prime}=a \\cos a x\\\\\n\\begin{aligned}\n&W=y_{1} y_{2}^{\\prime}-y_{2} y_{1}^{\\prime}=a . \\text { Also, } \\phi(x)=\\sec a x \\\\\n&A^{\\prime}=\\frac{-y_{2} \\phi(x)}{W}, \\text { and } B^{\\prime}=\\frac{y_{1} \\phi(x)}{W} \\\\\n&A^{\\prime}=\\frac{-\\sin a x \\cdot \\sec a x}{a}, \\quad B^{\\prime}=\\frac{\\cos a x \\cdot \\sec a x}{a}\n\\end{aligned}\n\\\\[4mm]\n\\begin{aligned}\nA^{\\prime} &=\\frac{-\\tan a x}{a}, \\quad B^{\\prime}=\\frac{1}{a} \\\\\nB &=\\frac{1}{a} \\int d x+c_{2} \\\\\nA &=-\\frac{1}{a} \\int \\tan a x d x+C_{1}, \\quad B=\\frac{x}{a}+C_{2} \\\\\nA &=\\frac{-\\log (\\sec a x)}{a^{2}}+C_{1}\n\\end{aligned}\n\\\\[4mm]\n\\text{Substituting these values of } A \\text{ and } B \\text{ in Eqn. (1), we get: }\\\\"
Comments
Leave a comment