Solve the problem of the vibrating string for the following boundary conditions
1. y(0,t)= 0
2. y(l,t)= 0
3. dy/dt(x,0)= v0 sin nπx/l
4. y(x,0)= y0 sin 2πx/l
"\\text{The question we are to solve is;}\\\\\n\\frac{\\partial^2y}{\\partial t^2}=c^2\\frac{\\partial^2y}{\\partial x^2}\\\\\ny(0,\\text{t})=0,\ny(L,\\text{t})=0,0\\leq t \\leq \\text{L}\\\\\n\\text{y(x,0)}=y_0\\sin(\\frac{2\\pi x}{L}), \\frac{\\partial y(x,0)}{\\partial t}=y_0\\sin(\\frac{n\\pi x}{L}), 0\\leq x \\leq L\\\\\n\\text{Let's start off with the product solution;}\\\\\\text{y(x,t)}=\\text{X(x)T(t)}\\\\\n\\text{Plugging this into the two boundary conditions gives,}\\\\\n\\text{X(0)}=0,\\text{X(L)=0}\\\\\n\\text{Plugging the product solution into the differential equation, separating and}\\\\\n\\text{introducing a separation constant gives,}\\\\\n\\frac{\\partial^2(X(x)T(t))}{\\partial t^2}=c^2\\frac{\\partial^2(X(x)T(t)))}{\\partial x^2}\\\\\n\\Rightarrow X(x)\\frac{d^2 T}{dt^2}=c^2T(t)\\frac{d^2X}{dx^2}\\\\\n\\Rightarrow \\frac{1}{c^2T(t)}\\frac{d^2T}{dt^2}=\\frac{1}{X(x)}\\frac{d^2X}{dx^2}=-\\lambda\\\\\n\\text{We moved the $c^2$ to the left side for convenience and chose $-\\lambda$ for the separation}\\\\\n\\text{constant so the differential equation for X would match a known (and solved) case. }\\\\\n\\text{The two ordinary differential equations we get from separation of variables are then,}\\\\\n\\frac{d^2T}{dt^2}+c^2\\lambda T=0 \\text{ and } \\frac{d^2X}{dx^2}+\\lambda X=0 \\text{ with the boundary conditions}\\\\\n\\text{X(0)}=0 \\text{ and } \\text{X(L)}=0\\\\\n\\text{Now, the eigenvalues and eigenfunctions for this problem are,}\\\\\n\\lambda_n=(\\frac{n\\pi}{L})^2 \\text{ and }X_n(x)=\\sin(\\frac{n\\pi x}{L}) \\text{ respectively. For n} =1,2,3,\\ldots.\\\\\n\\text{The first ordinary differential equation is now,}\\\\\n\\frac{d^2T}{dt^2}+(\\frac{\\pi nc}{L})^2 T=0\\\\\n\\text{and because the coefficient of the T is clearly positive the solution to this is,}\\\\\nT(t)=c_1\\cos(\\frac{n\\pi ct}{L})+c_1\\sin(\\frac{n\\pi ct}{L})\\\\\n\\text{Because there is no reason to think that either of the oefficients above are zero we}\\\\\n\\text{ then get two product solutions,}\\\\\ny_n(x,t)=A_n\\cos(\\frac{n\\pi ct}{L})\\sin(\\frac{n\\pi x}{L}), \\text{and}\\\\\ny_n(x,t)=B_n\\sin(\\frac{n\\pi ct}{L})\\sin(\\frac{n\\pi x}{L}) \\text{ for n}=1,2,3,\\ldots\\\\\n\\text{Then the general solution due to the principle of superposition is,}\\\\\ny(x,t)=\\sum^\\infty_{n=1}[A_n\\cos(\\frac{n\\pi ct}{L})\\sin(\\frac{n\\pi x}{L})+B_n\\sin(\\frac{n\\pi ct}{L})\\sin(\\frac{n\\pi x}{L})].\\\\\n\\text{Now in order to apply the second initial condition we will need to differentiate the}\\\\\n\\text{general solution with respect to t. So,} \\\\\n\\frac{\\partial y}{\\partial t}=\\sum^\\infty_{n=1}[-\\frac{n \\pi c}{L}A_n\\sin(\\frac{n\\pi ct}{L})\\sin(\\frac{n\\pi x}{L})+B_n\\cos(\\frac{n\\pi ct}{L})\\sin(\\frac{n\\pi x}{L})].\\\\\n\\text{Applying the initial conditions yields,}\\\\\ny(x,0)=y_0\\sin(\\frac{2\\pi x}{L})=\\sum^\\infty_{n=1}[A_n\\sin(\\frac{n \\pi x}{L})], \\text{and}\\\\\n\\frac{\\partial y(x,0)}{\\partial t}=\\sum^\\infty_{n=1}[\\frac{n\\pi c}{L}B_n\\sin(\\frac{n\\pi x}{L})].\\\\\n\\text{Now, using the formulas from Fourier sine series, we get;}\\\\\nA_n=\\frac{2}{L}\\int^L_0[(y_0\\sin(\\frac{2\\pi x}{L}))(\\sin(\\frac{n\\pi x}{L}))] \\ dx, \\text{for n}=1,2,3,\\ldots\\\\\nB_n=\\frac{2}{n\\pi c}\\int^L_0[(y_0\\sin(\\frac{n\\pi x}{L}))(\\sin(\\frac{n\\pi x}{L}))] \\ dx, \\text{for n}=1,2,3,\\ldots\\\\\n\\text{Thus, upon integrating we have} \\\\\nA_n=0 \\text{ if n}\\neq2, \\text{and A}_2=y_0\\\\\n\\text{Also, } B_n=\\frac{L y_0}{n\\pi c} \\text{, for n=}1,2,3,\\ldots\\\\\n\\text{Hence, y(x,t)}=y_o\\cos(\\frac{2\\pi ct}{L})\\sin(\\frac{2\\pi x}{L})+\\frac{Ly_o}{\\pi c}\\left\\{\\sum^\\infty_{n=1}\\left[\\frac{1}{n}\\sin(\\frac{n\\pi ct}{L})\\sin(\\frac{n\\pi x}{L})\\right]\\right\\} \\\\\n\\text{is the solution of the given initial boundary value problem.}"
Comments
Leave a comment