Answer to Question #288853 in Differential Equations for Pankaj

Question #288853

If f(x, y) ={ 1 if x=0 or y=0 and 0 , otherwise } then lim f(x, y) does not exist for limit (x, y) approaches to (0, 0).

1
Expert's answer
2022-01-20T12:37:24-0500

Consider the limit of f(x,y) along straight lines x=t, y=at, (or y=ax, wherea is the slope) as t0+.We have,lim(x,y)(0,0)f(x,y)=limt0+f(t,at)=0,if a0 (by definition of the function).And,lim(x,y)(0,0)f(x,y)=limt0+f(t,at)=1,if a=0.(by definition of the function)Thus, since the limit along a straight line depends on the slope of the line. We havethat the two-variable limit does not exist.\text{Consider the limit of f(x,y) along straight lines x$=$t, y$=$at, (or y$=$ax, where}\\ \text{a is the slope) as t}\rightarrow0^+. \text{We have,}\\ \lim_{(x,y) \rightarrow(0,0)}f(x,y)=\lim_{t \rightarrow0^+}f(t,at)=0, \text{if a}\neq0\ (\text{by definition of the function} ).\\ \text{And,}\\ \lim_{(x,y) \rightarrow(0,0)}f(x,y)=\lim_{t \rightarrow0^+}f(t,at)=1, \text{if a}=0.(\text{by definition of the function} )\\ \text{Thus, since the limit along a straight line depends on the slope of the line. We have}\\\text{that the two-variable limit does not exist.}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment