Question #288268

y'=cos(x+y)

1
Expert's answer
2022-01-18T12:22:24-0500

Instruction:

Solve y=cos(x+y)y'=cos(x+y)

Solution:

y=cos(x+y)...(1)y'=cos(x+y) ...(1)

Let x+y=tx+y = t ...(2)

1+y=dtdxy=dtdx11+y'=\frac{dt}{dx}\Rightarrow y'=\frac{dt}{dx}-1

From (1), we get

dtdx1=costdtdx=1+costdtdx=2cos2t2sec2t2dt=2dx\frac{dt}{dx}-1=\cos t\\\Rightarrow \frac{dt}{dx}=1+\cos t\\\Rightarrow \frac{dt}{dx}=2\cos^2 \frac{t}{2}\\ \Rightarrow \sec^2\frac{t}{2} dt=2dx

Integrating both sides, we get

2tant2=2x+c2tanx+y2=2x+c2\tan \frac{t}{2}=2x+c\\ \Rightarrow 2\tan \frac{x+y}{2}=2x+c\\ [From (2)]



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS