y'=cos(x+y)
Instruction:
Solve y′=cos(x+y)y'=cos(x+y)y′=cos(x+y)
Solution:
y′=cos(x+y)...(1)y'=cos(x+y) ...(1)y′=cos(x+y)...(1)
Let x+y=tx+y = tx+y=t ...(2)
1+y′=dtdx⇒y′=dtdx−11+y'=\frac{dt}{dx}\Rightarrow y'=\frac{dt}{dx}-11+y′=dxdt⇒y′=dxdt−1
From (1), we get
dtdx−1=cost⇒dtdx=1+cost⇒dtdx=2cos2t2⇒sec2t2dt=2dx\frac{dt}{dx}-1=\cos t\\\Rightarrow \frac{dt}{dx}=1+\cos t\\\Rightarrow \frac{dt}{dx}=2\cos^2 \frac{t}{2}\\ \Rightarrow \sec^2\frac{t}{2} dt=2dxdxdt−1=cost⇒dxdt=1+cost⇒dxdt=2cos22t⇒sec22tdt=2dx
Integrating both sides, we get
2tant2=2x+c⇒2tanx+y2=2x+c2\tan \frac{t}{2}=2x+c\\ \Rightarrow 2\tan \frac{x+y}{2}=2x+c\\2tan2t=2x+c⇒2tan2x+y=2x+c [From (2)]
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments