Question #288876

Solve :


dy/dx= 1/x+y+1

1
Expert's answer
2022-01-30T14:32:20-0500

From the given question, we have;

dydx=1x+y+1\displaystyle \frac{dy}{dx}=\frac{1}{x+y+1}

dxdy=x+y+11=x+y+1dxdyx=(y+1)(1)\displaystyle \Rightarrow \frac{dx}{dy}=\frac{x+y+1}{1}=x+y+1\\ \Rightarrow \frac{dx}{dy}-x=(y+1)\qquad\cdots\cdots\cdots\cdots(1)

which is a linear differential equation with x as dependent variable and y as independent variable.


Comparing (1) with the general form dxdy+Px=Q\displaystyle \frac{dx}{dy}+Px=Q, which is a linear differential equation with x as dependent variable yields; P=1, and Q=y+1.\displaystyle P=-1,\ \text{and } Q=y+1.


Now, the integrating factor (I.F.) =ePdy=edy=ey\displaystyle =e^{\int Pdy}=e^{-\int dy}=e^{-y}

Multiplying (1) by I.F. yields;

dxdyeyxey=(y+1)eyd(xey)dy=(y+1)eyeyx=(y+1)ey dy=yey2ey+k\displaystyle \frac{dx}{dy}e^{-y}-xe^{-y}=(y+1)e^{-y}\\ \Rightarrow \frac{d(xe^{-y})}{dy}=(y+1)e^{-y}\\ \Rightarrow e^{-y}x=\int(y+1)e^{-y}\ dy=−ye^{−y}−2e^{−y}+k, where k is an arbitrary constant.

eyx=ey(y+2)+kx=key(y+2)\displaystyle \Rightarrow e^{-y}x=-e^{-y}(y+2)+k\\ \Rightarrow x=ke^y-(y+2)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS