Answer to Question #288879 in Differential Equations for Pankaj

Question #288879

Solve the equation :


(7y-3x+3) dy +(3y-7x+7) dx=0

1
Expert's answer
2022-01-31T18:01:47-0500

Solution:

(7y3x+3)dy+(3y7x+7)dx=0(3x7y3)dy=(3y7x+7)dx(7y-3x+3)dy + (3y-7x+7)dx =0 \\\Rightarrow (3x-7y-3)dy=(3y-7x+7)dx

dydx=3y7x+73x7y3now,let x=x+h and y=y+kdydx=3y7x+3k7h+73x7y+3h7k3putting h=1 and k=0,we getdydx=3y7x3x7ynow,let y=vx so thatdydx=v+xdvdxwe havev+xdvdx=3vx7x3x7vxxdvdx=3v737vvxdvdx=3v73v+7v237vxdvdx=7v2737vdxx=37v7v27dvintegrating both sidesdxx=37v27dv7v7v27dvlnx+c=314lnv1v+112lnv21lnx+c=314lnyxy+x12ln(y)2(x)2(x)2Recall v=yxlnx+c=314lnyx314y+x12lnyx+12lny+x+12ln(x)2lnx+c=27lnyx57lny+x+12ln(x)22lnyx+5lny+x=C2lnyx+1+5lny+x1=C(Since y=y and x=(x1))\Rightarrow\dfrac{dy}{dx}=\dfrac{3y-7x+7}{3x-7y-3}\\ now,let ~x=x'+h~and~y=y'+k\\ \Rightarrow \dfrac{dy'}{dx'}=\dfrac{3y'-7x'+3k-7h+7}{3x'-7y'+3h-7k-3}\\ putting~h=1~and~k=0,we~get\\ \Rightarrow\dfrac{dy'}{dx'}=\dfrac{3y'-7x'}{3x'-7y'}\\ now,let~ y'=vx'~so~that\\ \Rightarrow\dfrac{dy'}{dx'}=v+x'\dfrac{dv}{dx'}\\ we~have\\ \Rightarrow v+x'\dfrac{dv}{dx'}=\dfrac{3vx'-7x'}{3x'-7vx'}\\ \Rightarrow x'\dfrac{dv}{dx'}=\dfrac{3v-7}{3-7v}-v\\ \Rightarrow x'\dfrac{dv}{dx'}=\dfrac{3v-7-3v+7v^2}{3-7v}\\ \Rightarrow x'\dfrac{dv}{dx'}=\dfrac{7v^2-7}{3-7v}\\ \Rightarrow\dfrac{dx'}{x'}=\dfrac{3-7v}{7v^2-7}dv\\ integrating~both~sides\\ \Rightarrow\int \dfrac{dx'}{x'}=\int \dfrac{3}{7v^2-7}dv-\int \dfrac{7v}{7v^2-7}dv\\ \Rightarrow ln|x'|+c= \dfrac{3}{14}ln \dfrac{|v-1|}{|v+1|}-\dfrac{1}{2}ln|{v^2-1}|\\ \Rightarrow ln|x'|+c= \dfrac{3}{14}ln \dfrac{|y'-x'|}{|y'+x'|}-\dfrac{1}{2} ln|\dfrac{(y')^2-(x')^2}{(x')^2}|\\ Recall~v=\dfrac{y'}{x'}\\ \Rightarrow ln|x'|+c= \dfrac{3}{14}ln {|y'-x'|}- \dfrac{3}{14}{|y'+x'|}-\dfrac{1}{2} ln|{y'-x'}|+\dfrac{1}{2} ln|{y'+x'}+\dfrac{1}{2} ln|({x'})^2|\\ \Rightarrow ln|x'|+c= -\dfrac{2}{7}ln {|y'-x'|}-\dfrac{5}{7}ln {|y'+x'|}+\dfrac{1}{2} ln|({x'})^2|\\ \Rightarrow 2ln|y'-x'|+5ln|y'+x'|=C\\ \Rightarrow2ln|y-x+1|+5ln|y+x-1|=C\\ (Since~y'=y~and~x'=(x-1))

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment