Solve the equation :
(7y-3x+3) dy +(3y-7x+7) dx=0
"(7y-3x+3)dy + (3y-7x+7)dx =0\n\n\\\\\\Rightarrow (3x-7y-3)dy=(3y-7x+7)dx"
"\\Rightarrow\\dfrac{dy}{dx}=\\dfrac{3y-7x+7}{3x-7y-3}\\\\\nnow,let ~x=x'+h~and~y=y'+k\\\\\n\\Rightarrow \\dfrac{dy'}{dx'}=\\dfrac{3y'-7x'+3k-7h+7}{3x'-7y'+3h-7k-3}\\\\\nputting~h=1~and~k=0,we~get\\\\\n\\Rightarrow\\dfrac{dy'}{dx'}=\\dfrac{3y'-7x'}{3x'-7y'}\\\\\nnow,let~ y'=vx'~so~that\\\\\n\\Rightarrow\\dfrac{dy'}{dx'}=v+x'\\dfrac{dv}{dx'}\\\\\nwe~have\\\\\n\\Rightarrow v+x'\\dfrac{dv}{dx'}=\\dfrac{3vx'-7x'}{3x'-7vx'}\\\\\n\\Rightarrow x'\\dfrac{dv}{dx'}=\\dfrac{3v-7}{3-7v}-v\\\\\n\\Rightarrow x'\\dfrac{dv}{dx'}=\\dfrac{3v-7-3v+7v^2}{3-7v}\\\\\n\\Rightarrow x'\\dfrac{dv}{dx'}=\\dfrac{7v^2-7}{3-7v}\\\\\n\\Rightarrow\\dfrac{dx'}{x'}=\\dfrac{3-7v}{7v^2-7}dv\\\\\nintegrating~both~sides\\\\\n\\Rightarrow\\int \\dfrac{dx'}{x'}=\\int \\dfrac{3}{7v^2-7}dv-\\int \\dfrac{7v}{7v^2-7}dv\\\\\n\\Rightarrow ln|x'|+c= \\dfrac{3}{14}ln \\dfrac{|v-1|}{|v+1|}-\\dfrac{1}{2}ln|{v^2-1}|\\\\\n\\Rightarrow ln|x'|+c= \\dfrac{3}{14}ln \\dfrac{|y'-x'|}{|y'+x'|}-\\dfrac{1}{2} ln|\\dfrac{(y')^2-(x')^2}{(x')^2}|\\\\\nRecall~v=\\dfrac{y'}{x'}\\\\\n\\Rightarrow ln|x'|+c= \\dfrac{3}{14}ln {|y'-x'|}- \\dfrac{3}{14}{|y'+x'|}-\\dfrac{1}{2} ln|{y'-x'}|+\\dfrac{1}{2} ln|{y'+x'}+\\dfrac{1}{2} ln|({x'})^2|\\\\\n\\Rightarrow ln|x'|+c= -\\dfrac{2}{7}ln {|y'-x'|}-\\dfrac{5}{7}ln {|y'+x'|}+\\dfrac{1}{2} ln|({x'})^2|\\\\\n\\Rightarrow 2ln|y'-x'|+5ln|y'+x'|=C\\\\\n\\Rightarrow2ln|y-x+1|+5ln|y+x-1|=C\\\\ \n\n(Since~y'=y~and~x'=(x-1))"
Comments
Leave a comment