(7y−3x+3)dy+(3y−7x+7)dx=0⇒(3x−7y−3)dy=(3y−7x+7)dx
⇒dxdy=3x−7y−33y−7x+7now,let x=x′+h and y=y′+k⇒dx′dy′=3x′−7y′+3h−7k−33y′−7x′+3k−7h+7putting h=1 and k=0,we get⇒dx′dy′=3x′−7y′3y′−7x′now,let y′=vx′ so that⇒dx′dy′=v+x′dx′dvwe have⇒v+x′dx′dv=3x′−7vx′3vx′−7x′⇒x′dx′dv=3−7v3v−7−v⇒x′dx′dv=3−7v3v−7−3v+7v2⇒x′dx′dv=3−7v7v2−7⇒x′dx′=7v2−73−7vdvintegrating both sides⇒∫x′dx′=∫7v2−73dv−∫7v2−77vdv⇒ln∣x′∣+c=143ln∣v+1∣∣v−1∣−21ln∣v2−1∣⇒ln∣x′∣+c=143ln∣y′+x′∣∣y′−x′∣−21ln∣(x′)2(y′)2−(x′)2∣Recall v=x′y′⇒ln∣x′∣+c=143ln∣y′−x′∣−143∣y′+x′∣−21ln∣y′−x′∣+21ln∣y′+x′+21ln∣(x′)2∣⇒ln∣x′∣+c=−72ln∣y′−x′∣−75ln∣y′+x′∣+21ln∣(x′)2∣⇒2ln∣y′−x′∣+5ln∣y′+x′∣=C⇒2ln∣y−x+1∣+5ln∣y+x−1∣=C(Since y′=y and x′=(x−1))
Comments
Leave a comment