for the following differential equation locate and classify its singular points on the x axis x^2y"+(2-x)y'=0
1
Expert's answer
2022-01-20T17:22:55-0500
x2y′′+(2−x)y′=0⋯⋯⋯(eqn1)Comparing eqn1 to the general equation below:P(x)y′′+Q(x)y′+R(x)y=0, yieldsP=x2,Q(x)=(2−x),and R(x)=0Now, by definition we have that a point xo is a singular point ifP(x0)=0.Thus equating our P(x)=0,yieldsx2=0⇒x=0.The singular points of the given differential equation on the x-axis is x = 0.To classify the singular point xo=0, we need to compute,x→x0lim(x−xo)P(x)Q(x),and x→x0lim(x−xo)2P(x)R(x)Now, since xo=0, we have:x→x0lim(x−xo)P(x)Q(x)=x→0lim(x−0)(x22−x)=x→0limx2−x=∞,andx→x0lim(x−xo)2P(x)R(x)=0<∞. Since, x→x0lim(x−xo)2P(x)R(x)<∞ butx→x0lim(x−xo)P(x)Q(x)=∞,We conclude that the singular point xo=0 is an irregular singular point.
Comments