Find the integral surface of the equation:
(x²-yz)p+(y²-zx)q =z²-xy
passing through the line x=1 , y=0
"\\text{To find the integral surface of the given equation, we proceed as follows:}"
The auxiliary equations are;
"\\displaystyle\n\\frac{dx}{x^2-yz}=\\frac{dy}{y^2-zx}=\\frac{dz}{z^2-xy}\\\\"
"\\displaystyle\n\\Rightarrow \\frac{dx-dy}{x^2-yz-y^2+zx}=\\frac{dy-dz}{y^2-zx-z^2+xy}=\\frac{dz-dx}{z^2-xy-x^2+yz}\\\\\n\\Rightarrow \\frac{dx-dy}{(x-y)(x+y+z)}=\\frac{dy-dz}{(x+y+z)(y-z)}=\\frac{dz-dx}{(x+y+z)(z-x)}\\\\\n\\Rightarrow \\frac{dx-dy}{x-y}=\\frac{dy-dz}{y-z}=\\frac{dz-dx}{z-x}\\cdots\\cdots\\cdots\\cdots(1)\\\\"
Integrating first two members of (1) yields;
"\\displaystyle\n\\log(x-y)=\\log(y-z)+\\log c_1\\\\\n\\Rightarrow\\log \\frac{x-y}{y-z}=\\log c_1\\\\\n\\Rightarrow \\frac{x-y}{y-z}=c_1\\\\"
Similarly from the last two members of (1), we have;
"\\displaystyle\n\\frac{y-z}{z-x}=c_2"
The required solution is;
"\\displaystyle\nf\\left[\\frac{x-y}{y-z},\\frac{y-z}{z-x}\\right]=0"
Comments
Leave a comment