Solve
(D^(2)-DD'-2D'^(2)+2D+2D')z=sin(2x+y)
"(D^2-DD'-2D'^2+2D+2D')z=sin(2x+y)"
auxillary equation:
"m^2-m-2+2m+2=0"
"m^2+m=0"
"m_1=0,m_2=-1"
complementary function:
"C.F.=f_1(y+m_1x)+f_2(y+m_2x)=f_1(y)+f_2(y-x)"
particular integral:
"P.I.=\\frac{1}{F(D,D')}sin(ax+by)=I.P.\\frac{1}{F(D,D')}e^{i(ax+by)}=I.P.\\frac{1}{F(ia,ib)}e^{i(ax+by)}"
"P.I.=I.P.\\frac{1}{(2i)^2-2i\\cdot i-2i^2+2\\cdot2i+2i}e^{i(ax+by)}=I.P.\\frac{1}{6i}(cos(2x+y)+isin(2x+y))="
"=I.P.-\\frac{i}{6}(cos(2x+y)+isin(2x+y))=-\\frac{1}{6}cos(2x+y)"
"z=C.F.+P.I.=f_1(y)+f_2(y-x)-\\frac{1}{6}cos(2x+y)"
Comments
Leave a comment