Answer to Question #285372 in Differential Equations for Abu bakar

Question #285372

Solve



(D^(2)-DD'-2D'^(2)+2D+2D')z=sin(2x+y)

1
Expert's answer
2022-01-09T11:26:18-0500

(D2DD2D2+2D+2D)z=sin(2x+y)(D^2-DD'-2D'^2+2D+2D')z=sin(2x+y)


auxillary equation:

m2m2+2m+2=0m^2-m-2+2m+2=0

m2+m=0m^2+m=0

m1=0,m2=1m_1=0,m_2=-1

complementary function:

C.F.=f1(y+m1x)+f2(y+m2x)=f1(y)+f2(yx)C.F.=f_1(y+m_1x)+f_2(y+m_2x)=f_1(y)+f_2(y-x)


 particular integral:

P.I.=1F(D,D)sin(ax+by)=I.P.1F(D,D)ei(ax+by)=I.P.1F(ia,ib)ei(ax+by)P.I.=\frac{1}{F(D,D')}sin(ax+by)=I.P.\frac{1}{F(D,D')}e^{i(ax+by)}=I.P.\frac{1}{F(ia,ib)}e^{i(ax+by)}


P.I.=I.P.1(2i)22ii2i2+22i+2iei(ax+by)=I.P.16i(cos(2x+y)+isin(2x+y))=P.I.=I.P.\frac{1}{(2i)^2-2i\cdot i-2i^2+2\cdot2i+2i}e^{i(ax+by)}=I.P.\frac{1}{6i}(cos(2x+y)+isin(2x+y))=


=I.P.i6(cos(2x+y)+isin(2x+y))=16cos(2x+y)=I.P.-\frac{i}{6}(cos(2x+y)+isin(2x+y))=-\frac{1}{6}cos(2x+y)


z=C.F.+P.I.=f1(y)+f2(yx)16cos(2x+y)z=C.F.+P.I.=f_1(y)+f_2(y-x)-\frac{1}{6}cos(2x+y)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment