(D2−DD′−2D′2+2D+2D′)z=sin(2x+y)
auxillary equation:
m2−m−2+2m+2=0
m2+m=0
m1=0,m2=−1
complementary function:
C.F.=f1(y+m1x)+f2(y+m2x)=f1(y)+f2(y−x)
particular integral:
P.I.=F(D,D′)1sin(ax+by)=I.P.F(D,D′)1ei(ax+by)=I.P.F(ia,ib)1ei(ax+by)
P.I.=I.P.(2i)2−2i⋅i−2i2+2⋅2i+2i1ei(ax+by)=I.P.6i1(cos(2x+y)+isin(2x+y))=
=I.P.−6i(cos(2x+y)+isin(2x+y))=−61cos(2x+y)
z=C.F.+P.I.=f1(y)+f2(y−x)−61cos(2x+y)
Comments
Leave a comment