Answer:
Given:
(D2+DD′−6D′2)z=ycosx
Now, the Auxiliary equation will be:
m2+m−6=0⟹(m−2)(m+3)=0⟹m=2,−3
Hence,
C.F=ϕ1(y+2x)+ϕ2(y−3x)
Now,
P.I=(D2+DD′−6D′2)1ycosx
⟹P.I=(D+3D′)(D−2D′)1ycosx=D+3D′1∫D−2D′ycosxdx=D+3D′1[(c1−2x)sinx−2cosx]=D+3D′1(ysinx−2cosx)=∫D+3D′(ysinxdx)−∫D+3D′2cosxdx=∫D+3D′(c2+3x)sinxdx=∫D+3D′2cosxdx
(y=c2+3x)
⟹P.I=−ycosx+∫cosxdx=−ycosx+sinx
Therefore the complete solution is
C.F+P.I=ϕ1(y+2x)+ϕ2(y−3x)+−ycosx+sinx
Comments