Question #285371

Solve


(D^(2)+DD'-6D'^(2))z=y cosx


1
Expert's answer
2022-01-09T16:55:09-0500

Answer:


Given:



(D2+DD6D2)z=ycosx(D ^ 2 +DD ^′ −6D ^{′2} )z=ycosx



Now, the Auxiliary equation will be:


m2+m6=0(m2)(m+3)=0m=2,3m ^2 +m−6=0 ⟹(m−2)(m+3)=0 ⟹m=2,−3


Hence,

C.F=ϕ1(y+2x)+ϕ2(y3x)C.F=ϕ_ 1 ​ (y+2x)+ϕ _2 ​ (y−3x)

Now,


P.I=1(D2+DD6D2)ycosxP.I=\frac{1}{(D ^ 2 +DD ^′ −6D ^{′2} )}ycosx



    P.I=1(D+3D)(D2D)ycosx=1D+3DD2Dycosxdx=1D+3D[(c12x)sinx2cosx]=1D+3D(ysinx2cosx)=D+3D(ysinxdx)D+3D2cosxdx=D+3D(c2+3x)sinxdx=D+3D2cosxdx\implies P.I=\frac{1}{(D+3D^{'})(D-2D^{'})}ycosx=\frac{1}{D+3D^{'}}\int_{D-2D^{'}}ycosxdx=\frac{1}{D+3D^{'}}[(c_1-2x)sinx-2cosx]=\frac{1}{D+3D^{'}}(ysinx-2cosx)=\int_{D+3D^{'}}(ysinxdx)-\int_{D+3D^{'}}2cosxdx=\int _{D+3D^{'}}(c_2+3x)sinxdx=\int _{D+3D^{'}}2cosxdx

(y=c2+3x)(y=c_2+3x)

    P.I=ycosx+cosxdx=ycosx+sinx\implies P.I=-ycosx+\int cosxdx = -ycosx +sinx

Therefore the complete solution is


C.F+P.I=ϕ1(y+2x)+ϕ2(y3x)+ycosx+sinxC.F+P.I= \phi_1(y_+2x)+\phi_2(y-3x)+-ycosx+sinx


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS