Question #285246

S how that y = c 1

e

x + c 2

e

2 x

is the general solution of y

′′ − 3 y

′ + 2y = 0 on any


interval, and find the particular solution for w hich y 0 = − 1 a n d y

( 0) = 1.


1
Expert's answer
2022-01-06T18:04:31-0500
y3y+2y=0y''-3y'+2y=0

Characteristic (auxiliary) equation


r23r+2=0r^2-3r+2=0

(r1)(r2)=0(r-1)(r-2)=0

r1=1,r2=2r_1=1, r_2=2

The general solution of the differential equation is


y=c1ex+c2e2x,xRy=c_1e^x+c_2e^{2x}, x\in \R

Given y(0)=1,y(0)=1y(0)=-1, y'(0)=1


y(0)=c1e0+c2e2(0)y(0)=c_1e^0+c_2e^{2(0)}

c1+c2=1c_1+c_2=-1

y=c1ex+2c2e2xy'=c_1e^x+2c_2e^{2x}

y(0)=c1e0+2c2e2(0)y'(0)=c_1e^0+2c_2e^{2(0)}

c1+2c2=1c_1+2c_2=1

Then


c1=1c2c_1=-1-c_2

c2=2c_2=2

c1=3,c2=2c_1=-3, c_2=2

The particular solution is


y=3ex+2e2xy=-3e^x+2e^{2x}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS