y′′−3y′+2y=0 Characteristic (auxiliary) equation
r2−3r+2=0
(r−1)(r−2)=0
r1=1,r2=2 The general solution of the differential equation is
y=c1ex+c2e2x,x∈R Given y(0)=−1,y′(0)=1
y(0)=c1e0+c2e2(0)
c1+c2=−1
y′=c1ex+2c2e2x
y′(0)=c1e0+2c2e2(0)
c1+2c2=1 Then
c1=−1−c2
c2=2
c1=−3,c2=2The particular solution is
y=−3ex+2e2x
Comments