Question #285292

orthogonal trajectories of y' = - (x/y)


1
Expert's answer
2022-01-07T14:26:30-0500

y=xyTo get the orthogonal trajectoryWe replacexyby its negative reciprocalHence, we havey=yxWe solve this D.E using separation of variablesHence, we havedydx=yxIntegrating both sides, we havedyy=dxxIntegrating, we obtainy=cxwhich is a family of the orthogonal trajectorywhere C is an arbitrary constanty' = -\dfrac{x}{y} \\ \text{To get the orthogonal trajectory}\\ \text{We replace} \, -\dfrac{x}{y} \, \text{by its negative reciprocal}\\ \text{Hence, we have}\\ y' = \dfrac{y}{x} \\ \text{We solve this D.E using separation of variables}\\ \text{Hence, we have}\\ \dfrac{dy}{dx} = \dfrac{y}{x} \\ \text{Integrating both sides, we have}\\ \int \dfrac{dy}{y} = \int \dfrac{dx}{x} \\ \text{Integrating, we obtain}\\ y = cx \\ \text{which is a family of the orthogonal trajectory}\\ \text{where C is an arbitrary constant}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS