Question #285148

Solve the initial value problem (IVP):


(D^2+4D+4)=9e^x


y(0)=2


y'(0)=1

1
Expert's answer
2022-01-06T17:48:51-0500

D2+4D+4=9exD^2+4D+4=9e^x

Where DD is the linear differential operator ddx\frac{d}{dx}

Thus we can write the equation as:

d2ydx2+4dydx+4y=9ex\frac{d^2y}{dx^2}+4\frac{dy}{dx}+4y=9e^x

The associated auxilliary equation is;

m2+4m+4=0(m+2)(m+2)m=2 twicem^2+4m+4=0\\ (m+2)(m+2)\\ m=-2 \text{ twice}

Thus the solution of the homogeneous part is

yc=(A+Bx)e2xy_c=(A+Bx)e^{-2x}

For the particular solution

Consider the solution y=Aexy=Ae^x

    y=Aex,y=Aex\implies y'=Ae^x,y''=Ae^x

Substitute this into the equation.

Aex+4Aex+4Aex=9ex9Aex=9exA=1Ae^x+4Ae^x+4Ae^x=9e^x\\ 9Ae^x=9e^x\\ A=1

Thus the particular solution is;

yp=exy_p=e^x

Hence, the general solution is

y=(A+Bx)e2x+exy=(A+Bx)e^{-2x}+e^x

Now, consider the initial value given. y(0)=2,y(0)=1y(0)=2,y'(0)=1

y(0)=A+1=2A=1y(0)=A+1=2\\A=1

y(x)=Be2x2(A+Bx)e2x+exy(0)=B2A+1=1B=2A=2y'(x)=Be^{-2x}-2(A+Bx)e^{-2x}+e^x\\ y'(0)=B-2A+1=1\\ B=2A=2

Hence the solution to the IVP is;

y=(1+2x)e2x+exy=(1+2x)e^{-2x}+e^x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS