The displacement y(x,t) is given by the equation:
ytt=a2yxx
boundary conditions:
y(0,t)=y(l,t)=0
yt(0)=bsin(3πx/l)
y(x,0)=0
solution:
y(x,t)=Bsin(nπx/l)(Ccos(nπat/l)+Dsin(nπat/l))
then:
y(x,0)=Bsin(nπx/l)C=0⟹C=0
y(x,t)=Bsin(nπx/l)Dsin(nπat/l)
the most general solution:
y(x,t)=∑Bnsin(nπx/l)sin(nπat/l)
then:
yt=∑Bn(nπa/l)sin(nπx/l)sin(nπat/l)
yt(0)=bsin(3πx/l)=∑Bn(nπa/l)sin(nπx/l)sin(nπat/l)
b=B3(3πa/l),B1=B2=B4=...=0
B3=3πabl
y(x,t)=B3sin(3πx/l)sin(3πat/l)=3πablsin(3πx/l)sin(3πat/l)
Comments