If a string of length l is initially at rest in equilibrium position and each of its points is given the velocity dy/dt= b sin^3πx/l find the displacement
The displacement y(x,t) is given by the equation:
"y_{tt}=a^2y_{xx}"
boundary conditions:
"y(0,t)=y(l,t)=0"
"y_t(0)=b sin(3\u03c0x\/l)"
"y(x,0)=0"
solution:
"y(x,t)=Bsin(n\\pi x\/l)(Ccos(n\\pi at\/l)+Dsin(n\\pi at\/l))"
then:
"y(x,0)=Bsin(n\\pi x\/l)C=0 \\implies C=0"
"y(x,t)=Bsin(n\\pi x\/l)Dsin(n\\pi at\/l)"
the most general solution:
"y(x,t)=\\sum B_nsin(n\\pi x\/l)sin(n\\pi at\/l)"
then:
"y_t=\\sum B_n(n\\pi a\/l)sin(n\\pi x\/l)sin(n\\pi at\/l)"
"y_t(0)=b sin(3\u03c0x\/l)=\\sum B_n(n\\pi a\/l)sin(n\\pi x\/l)sin(n\\pi at\/l)"
"b=B_3(3\\pi a\/l),B_1=B_2=B_4=...=0"
"B_3=\\frac{bl}{3\\pi a}"
"y(x,t)=B_3sin(3\\pi x\/l)sin(3\\pi at\/l)=\\frac{bl}{3\\pi a}sin(3\\pi x\/l)sin(3\\pi at\/l)"
Comments
Leave a comment