Reduce the homogeneous equation to the separated one
(x+y)dx+(y-x)dy=0
Let "y(x)=xu(x)." Then
"x+xu+(ux-x)(u+xu')=0"
"x(1+u+(u-1)(u+xu')=0"
"1+u+u^2-u+xuu'-xu'=0"
"x(1-u)u'=1+u^2"
"\\dfrac{1-u}{1+u^2}du=\\dfrac{dx}{x}"
Integrate
"\\tan^{-1}(u)-\\dfrac{1}{2}\\ln(1+u^2)=\\ln x+C"
"\\tan^{-1}(\\dfrac{y}{x})-\\dfrac{1}{2}\\ln(1+\\dfrac{y^2}{x^2})=\\ln x+C"
Comments
Leave a comment