Answer to Question #284303 in Differential Equations for Aysu

Question #284303

Reduce the homogeneous equation to the separated one

(x+y)dx+(y-x)dy=0


1
Expert's answer
2022-01-09T16:38:12-0500
(x+y)+(yx)y=0(x+y)+(y-x)y'=0

Let y(x)=xu(x).y(x)=xu(x). Then


y=u+xuy'=u+xu'

x+xu+(uxx)(u+xu)=0x+xu+(ux-x)(u+xu')=0

x(1+u+(u1)(u+xu)=0x(1+u+(u-1)(u+xu')=0

1+u+u2u+xuuxu=01+u+u^2-u+xuu'-xu'=0

x(1u)u=1+u2x(1-u)u'=1+u^2

1u1+u2du=dxx\dfrac{1-u}{1+u^2}du=\dfrac{dx}{x}

Integrate


1u1+u2du=dxx\int\dfrac{1-u}{1+u^2}du=\int \dfrac{dx}{x}

tan1(u)12ln(1+u2)=lnx+C\tan^{-1}(u)-\dfrac{1}{2}\ln(1+u^2)=\ln x+C

tan1(yx)12ln(1+y2x2)=lnx+C\tan^{-1}(\dfrac{y}{x})-\dfrac{1}{2}\ln(1+\dfrac{y^2}{x^2})=\ln x+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment