Answer to Question #284296 in Differential Equations for Aysu

Question #284296

Solve the equation in exact differentials:

(x2+y)dx+(x-2y)dy=0


1
Expert's answer
2022-01-05T05:23:20-0500

(x2y)dy+(y+x2)dx=0 Comparing with M(x,y)dy+N(x,y)dx=0 where M(x,y)=x2y and N(x,y)=y+x2 Check for full differential: M(x,y)x=N(x,y)y=1 Find F(x,y):dF(x,y)=Fydy+FxdxF(x,y)=N(x,y)dx=y+x2 dx=x33+yx+Cy(x33+yx)y=xCy=M(x,y)(x33+yx)ydy=2y dy=y2F(x,y)=x33+yx+Cy=y2+x33+yxy2+x33+yx=C\begin{aligned} &(x-2 y) \mathrm{d} y+\left(y+x^{2}\right) \mathrm{d} x=0 \\ &\text { Comparing with } M(x, y) \mathrm{d} y+N(x, y) \mathrm{d} x=0 \\ &\text { where } M(x, y)=x-2 y \text { and } N(x, y)=y+x^{2} \\ &\text { Check for full differential: } M(x, y)_{x}^{\prime}=N(x, y)_{y}^{\prime}=1 \\ &\text { Find } F(x, y): \mathrm{d} F(x, y)=F_{y}^{\prime} \mathrm{d} y+F_{x}^{\prime} \mathrm{d} x \\ &F(x, y)=\int N(x, y) \mathrm{d} x=\int y+x^{2} \mathrm{~d} x=\frac{x^{3}}{3}+y x+C_{y} \\ &\left(\frac{x^{3}}{3}+y x\right)_{y}^{\prime}=x \\ &C_{y}=\int M(x, y)-\left(\frac{x^{3}}{3}+y x\right)_{y}^{\prime} \mathrm{d} y=\int-2 y \mathrm{~d} y=-y^{2} \\ &\quad F(x, y)=\frac{x^{3}}{3}+y x+C_{y}=-y^{2}+\frac{x^{3}}{3}+y x \\ &-y^{2}+\frac{x^{3}}{3}+y x=C \end{aligned}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment