(x−2y)dy+(y+x2)dx=0 Comparing with M(x,y)dy+N(x,y)dx=0 where M(x,y)=x−2y and N(x,y)=y+x2 Check for full differential: M(x,y)x′=N(x,y)y′=1 Find F(x,y):dF(x,y)=Fy′dy+Fx′dxF(x,y)=∫N(x,y)dx=∫y+x2 dx=3x3+yx+Cy(3x3+yx)y′=xCy=∫M(x,y)−(3x3+yx)y′dy=∫−2y dy=−y2F(x,y)=3x3+yx+Cy=−y2+3x3+yx−y2+3x3+yx=C
Comments
Leave a comment