y′+x3y=x31Let v(x)=x21
v′(x)=−x32
−x32+x33=x31 The function v(x)=x21 is the solution of the given differential equation.
Let y=u(x)v(x)=u(x)(x21). Then
y′=x2u′−x32u Substitute
x2u′−x32u+x33u=x31
xu′+u=1
u−1du=−xdx Integrate
∫u−1du=−∫xdx
u−1=xC
y=(xC+1)(x21)
y(x)=x21+x3C
Comments