Question #284295

Solve the first order linear inhomogeneous differential equation using the Bernoulli method:

y,+(3y/x)=(1/x3)


1
Expert's answer
2022-01-06T06:32:26-0500
y+3xy=1x3y'+\dfrac{3}{x}y=\dfrac{1}{x^3}

Let v(x)=1x2v(x)=\dfrac{1}{x^2}


v(x)=2x3v'(x)=-\dfrac{2}{x^3}

2x3+3x3=1x3-\dfrac{2}{x^3}+\dfrac{3}{x^3}=\dfrac{1}{x^3}

The function v(x)=1x2v(x)=\dfrac{1}{x^2} is the solution of the given differential equation.

Let y=u(x)v(x)=u(x)(1x2).y=u(x)v(x)=u(x)(\dfrac{1}{x^2}). Then


y=ux22ux3y'=\dfrac{u'}{x^2}-\dfrac{2u}{x^3}

Substitute


ux22ux3+3ux3=1x3\dfrac{u'}{x^2}-\dfrac{2u}{x^3}+\dfrac{3u}{x^3}=\dfrac{1}{x^3}

xu+u=1xu'+u=1

duu1=dxx\dfrac{du}{u-1}=-\dfrac{dx}{x}

Integrate


duu1=dxx\int \dfrac{du}{u-1}=-\int\dfrac{dx}{x}

u1=Cxu-1=\dfrac{C}{x}

y=(Cx+1)(1x2)y=(\dfrac{C}{x}+1)(\dfrac{1}{x^2})

y(x)=1x2+Cx3y(x)=\dfrac{1}{x^2}+\dfrac{C}{x^3}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS