Given differential equation is p2−xp−q=0⇒p2=q+xp (1)
We can write it as f(x,y,z,p,q)=q+xp−p2=0
∂x∂f=p , ∂y∂f=0 , ∂z∂f=0 , ∂p∂f=x−2p , ∂q∂f=1
Hence, equation will be
−∂p∂fdx=−∂q∂fdy=−p∂p∂f−q∂q∂fdz=∂x∂f+p∂z∂fdp=∂y∂f+q∂z∂fdz
2p−xdx=−1dy=−p(x−2p)−qdz=pdp=0dz
Taking −1dy=pdp
Integrating it we get,
p=ae−y
Then from given equation (1),
q=−axe−y+a2e−2y
Now, dz=pdx+qdy=ae−ydx+(−axe−y+a2e−2y)dy
Integrating it both sides, we get
z=axe−y−21a2e−2y+b
Comments