Question #284339
P2-xp-q=0 solve by charpit method


1
Expert's answer
2022-01-03T16:18:42-0500

Given differential equation is p2xpq=0p2=q+xpp^2 - xp-q=0\Rightarrow p^2 = q + xp (1)

We can write it as f(x,y,z,p,q)=q+xpp2=0f(x,y,z,p,q) = q + xp - p^2 = 0


fx=p\frac{\partial f }{\partial x } = p , fy=0\frac{\partial f }{\partial y } = 0 , fz=0\frac{\partial f }{\partial z } = 0 , fp=x2p\frac{\partial f }{\partial p} = x-2p , fq=1\frac{\partial f }{\partial q } = 1


Hence, equation will be


dxfp=dyfq=dzpfpqfq=dpfx+pfz=dzfy+qfz\frac{dx}{-\frac{\partial f }{\partial p } } = \frac{dy}{-\frac{\partial f }{\partial q } } = \frac{dz}{-p\frac{\partial f }{\partial p }-q\frac{\partial f }{\partial q } } = \frac{dp}{\frac{\partial f }{\partial x }+p\frac{\partial f }{\partial z } } = \frac{dz}{\frac{\partial f }{\partial y }+q\frac{\partial f }{\partial z } }


dx2px=dy1=dzp(x2p)q=dpp=dz0\frac{dx}{2p-x } = \frac{dy}{-1 } = \frac{dz}{-p(x-2p)-q } = \frac{dp}{p} = \frac{dz}{0 }


Taking dy1=dpp\frac{dy}{-1 } = \frac{dp}{p}

Integrating it we get,

p=aeyp = ae^{-y}

Then from given equation (1),

q=axey+a2e2yq = -axe^{-y} + a^2e^{-2y}


Now, dz=pdx+qdy=aeydx+(axey+a2e2y)dydz = pdx + qdy = ae^{-y}dx + (-axe^{-y}+a^2e^{-2y})dy


Integrating it both sides, we get


z=axey12a2e2y+bz = axe^{-y}-\frac{1}{2}a^2e^{-2y} + b

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS