Answer to Question #284554 in Differential Equations for redin rzgar

Question #284554

Find a complete integral of x(1 + y)p = y(1 + x)q


1
Expert's answer
2022-01-05T05:25:17-0500

Let  p=zx   and    q=zy   Then   x(1+y)zx  =  y(1+x)zyx(1+y)dzdx  =  y(1+x)dzdy(1+y)dyy  =  (1+x)xdx(1+1y)dy  =  (1+1x)dx(y+ln(y))  =  (x+ln(x))  +  CLet\ \ p=\frac{\partial z}{\partial x}\ \ \ and\ \ \ \ q=\frac{\partial z}{\partial y}\ \ \ \\ Then\ \ \ x\left(\mathrm{1}+y\right)\frac{\partial z}{\partial x}\ \ =\ \ y\left(\mathrm{1}+x\right)\frac{\partial z}{\partial y} \\ \\ x\left(\mathrm{1}+y\right)\frac{dz}{dx}\ \ =\ \ y\left(\mathrm{1}+x\right)\frac{dz}{dy} \\ \\ \frac{\left(\mathrm{1}+y\right)dy}{y}\ \ =\ \ \frac{\left(\mathrm{1}+x\right)}{x}dx \\ \\ \int{\left(\mathrm{1}+\frac{\mathrm{1}}{y}\right)}dy\ \ =\ \ \int{\left(\mathrm{1}+\frac{\mathrm{1}}{x}\right)}dx \\ \\ \left(y+\mathrm{ln}\left(y\right)\right)\ \ =\ \ \left(x+\mathrm{ln}\left(x\right)\right)\ \ +\ \ C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment