Find a complete integral of x(1 + y)p = y(1 + x)q
Let p=∂z∂x and q=∂z∂y Then x(1+y)∂z∂x = y(1+x)∂z∂yx(1+y)dzdx = y(1+x)dzdy(1+y)dyy = (1+x)xdx∫(1+1y)dy = ∫(1+1x)dx(y+ln(y)) = (x+ln(x)) + CLet\ \ p=\frac{\partial z}{\partial x}\ \ \ and\ \ \ \ q=\frac{\partial z}{\partial y}\ \ \ \\ Then\ \ \ x\left(\mathrm{1}+y\right)\frac{\partial z}{\partial x}\ \ =\ \ y\left(\mathrm{1}+x\right)\frac{\partial z}{\partial y} \\ \\ x\left(\mathrm{1}+y\right)\frac{dz}{dx}\ \ =\ \ y\left(\mathrm{1}+x\right)\frac{dz}{dy} \\ \\ \frac{\left(\mathrm{1}+y\right)dy}{y}\ \ =\ \ \frac{\left(\mathrm{1}+x\right)}{x}dx \\ \\ \int{\left(\mathrm{1}+\frac{\mathrm{1}}{y}\right)}dy\ \ =\ \ \int{\left(\mathrm{1}+\frac{\mathrm{1}}{x}\right)}dx \\ \\ \left(y+\mathrm{ln}\left(y\right)\right)\ \ =\ \ \left(x+\mathrm{ln}\left(x\right)\right)\ \ +\ \ CLet p=∂x∂z and q=∂y∂z Then x(1+y)∂x∂z = y(1+x)∂y∂zx(1+y)dxdz = y(1+x)dydzy(1+y)dy = x(1+x)dx∫(1+y1)dy = ∫(1+x1)dx(y+ln(y)) = (x+ln(x)) + C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment