Answer to Question #275860 in Differential Equations for JAY

Question #275860
  1. y'''+3y''+4y'-8y=0    ans, y= c1ex+e-2x(c2cos2x+c3sin2x)
  2.  y(4)-4y''=0                   ans, y=c1+c2x+c3e2x+c4e-2x
1
Expert's answer
2021-12-09T14:32:48-0500

1.

Corresponding (auxiliary) equation


r3+3r2+4r8=0r^3+3r^2+4r-8=0

r2(r1)+4r(r1)+8(r1)=0r^2(r-1)+4r(r-1)+8(r-1)=0

(r1)(r2+4r+8)=0(r-1)(r^2+4r+8)=0

(r1)((r+2)2+4)=0(r-1)((r+2)^2+4)=0

r1=1,r2=2+2i,r3=22ir_1=1, r_2=-2+2i, r_3=-2-2i

The general solution of the given differential equation is


y=c1ex+e2x(c2cos(2x)+c3sin(2x))y=c_1e^x+e^{-2x}(c_2\cos(2x)+c_3\sin(2x))

+c3sin(2x)+c4xsin(2x)+c_3\sin(2x)+c_4x\sin(2x)

2.

Corresponding (auxiliary) equation


r44r2=0r^4-4r^2=0

r1=r2=0,r3=2,r4=2r_1=r_2=0, r_3=2, r_4=-2

The general solution of the given differential equation is


y=c1+c2x+c3e2x+c4e2xy=c_1+c_2x+c_3e^{2x}+c_4e^{-2x}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment