1.
Corresponding (auxiliary) equation
r3+3r2+4r−8=0
r2(r−1)+4r(r−1)+8(r−1)=0
(r−1)(r2+4r+8)=0
(r−1)((r+2)2+4)=0
r1=1,r2=−2+2i,r3=−2−2i
The general solution of the given differential equation is
y=c1ex+e−2x(c2cos(2x)+c3sin(2x))
+c3sin(2x)+c4xsin(2x)
2.
Corresponding (auxiliary) equation
r4−4r2=0
r1=r2=0,r3=2,r4=−2
The general solution of the given differential equation is
y=c1+c2x+c3e2x+c4e−2x
Comments
Leave a comment